38 research outputs found

    Galaxy evolution within the Kilo-Degree Survey

    Get PDF
    The ESO Public Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will scan 1500 square degrees in four optical filters (u, g, r, i). Designed to be a weak lensing survey, it is ideal for galaxy evolution studies, thanks to the high spatial resolution of VST, the good seeing and the photometric depth. The surface photometry have provided with structural parameters (e.g. size and S\'ersic index), aperture and total magnitudes have been used to derive photometric redshifts from Machine learning methods and stellar masses/luminositites from stellar population synthesis. Our project aimed at investigating the evolution of the colour and structural properties of galaxies with mass and environment up to redshift z∌0.5z \sim 0.5 and more, to put constraints on galaxy evolution processes, as galaxy mergers.Comment: 4 pages, 2 figures, to appear on the refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    Mechanical Behavior and Microstructural Development of Low-Carbon Steel and Microcomposite Steel Reinforcement Bars Deformed under Quasi-Static and Dynamic Shear Loading

    Get PDF
    Reinforcement bars of microcomposite (MC) steel, composed of lath martensite and minor amounts of retained austenite, possess improved strength and corrosion characteristics over low-carbon (LC) steel rebar; however, their performance under shear loading has not previously been investigated at the microstructural level. In this study, LC and MC steel cylinders were compression tested, and specimens machined into a forced-shear geometry were subjected to quasi-static and dynamic shear loading to determine their shear behavior as a function of the strain and strain rate. The as-received and sheared microstructures were examined using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Higher-resolution microstructural examinations were performed using transmission electron microscopy (TEM). The influence of the starting microstructure on the shear behavior was found to depend strongly on the strain rate; the MC steel exhibited not only greater strain-rate sensitivity than the LC steel but also a greater resistance to shear localization with load. In both steels, despite differences in the starting microstructure, post-mortem observations were consistent with a continuous mechanism operating within adiabatic shear bands (ASBs), in which subgrains rotated into highly misoriented grains containing a high density of dislocations

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Influence of necking propensity on the dynamic-tensile-extrusion response of fluoropolymers

    No full text
    The quasi-static and dynamic responses of two fluoropolymers – polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE) – have been extensively characterized. Here we investigate the influence of the propensity to neck or not between PCTFE and PTFE on their responses under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext). The Dyn-Ten-Ext technique was originally developed for metals and applied to copper and tantalum spheres by Gray, et al. as a tensile corollary to compressive Taylor Cylinder Impact Testing. Under Taylor Cylinder loading, both PTFE and PCTFE exhibit a classic three-diameter ductile deformation pattern. The ductile-to-brittle transition in PTFE occurs at 131 m s−1 with a very tight transition range in impact stress of less than 4 m s−1. Conversely, the ductile-to-brittle transition in PCTFE occurs between 165 and 200 m s−1 with a gradual transition to stochastic crack formation and ultimately failure. Under Dyn-Ten-Ext loading the onset of extrusion occurs above 164 and 259 m s−1 for PTFE and PCTFE respectively

    Models for mixed mode damage paths in shock loaded tantalum

    No full text
    Recent work [1] on recovered tantalum gas gun and HE driven samples has shown that incipient damage forms a path with a well defined roughness exponent. The path involves regions of localized plastic flow, in the HE driven case, and localized flow regions between voids, or “mixed mode”, in the gas gun case. The localized plastic flow can be diffuse or very localized into a “micro shear band.” The roughness property is an affine statistical scaling with a different scaling ratio between the shock and transverse directions. In this work, we model the scaling properties of the mixed mode damage paths with models of shear localization between voids. These models involve a bifurcation condition for necking down localization, similar to that of Thomason, and a “micro shear band” condition. The localization condition is driven by both pressure and shear, hence, the name “mixed mode.” Monte Carlo simulations of the damage path will be conducted using these models to test them for the affine scaling

    The effect of shockwave profile shape on dynamic brittle failure

    No full text
    The role of shock wave loading profile is investigated for the failure processes in a brittle material. The dynamic damage response of ductile metals has been demonstrated to be critically dependent on the shockwave profile and the stress-state of the shock. Changing from a square to triangular (Taylor) profile with an identical peak compressive stress has been reported to increase the “spall strength” by over a factor of two and suppress damage mechanisms. The spall strength of tungsten heavy alloy (WHA) based on plate impact square-wave loading has been extensively reported in the literature. Here a triangular wave loading profile is achieved with a composite flyer plate of graded density in contrast to the square-wave loading. Counter to the strong dependence in wave profile in ductile metals, for WHA, both square and triangle wave profiles the failure is by brittle cleavage fracture with additional energy dissipation through crack branching in the more brittle tungsten particles, largely indistinguishable between wave profiles. The time for crack nucleation is negligible compared to the duration of the experiment and the crack propagation rate is limited to the sound speed as defined by the shock velocity

    Experimental study of A36 steel spall fracture

    No full text
    The preliminary results of A36 steel spall experiment are presented. Special attention is given to the heat treating conditions in the two-phase (ferrite and austenite) region and resulting microstructure after the spall loading condition. One of the fundamental principles of any thermomechanical processing in the twophase region is'the simultaneous superposition of microstructure evolution and mechanical behavior of particular phase. The degree of generated defects, cracks and phases, and phase transformation is decisive for the final microstructure and the fracture resistance. Preliminary resutts show the banded structure still exists after the spall test and, totally unexpected lack of the visible characteristic voids, cracks or shear instabilities due to the tensile loading at the mid plane of the sample

    Study of high strain rate plastic deformation of low carbon microalloyed steels using experimental observation and computational modeling

    No full text
    This work presents validation of the integrated computer model to predict the impact of the microstructure evolution on the mechanical behavior of niobium-microalloyed steels under dynamic loading conditions. The microstructurally based constitutive equations describing the mechanical behavior of the mixed α\alpha and γ\gamma phases are proposed. It is shown that for a given finishing temperature and strain, the Nb steel exhibits strong influence of strain rate on the flow stress and final structure. This tendency is also observed in calculated results obtained using proposed modeling procedures. High strain rates influence the deformation mechanism and reduce the extent of recovery occurring during and after deformation and, in turn, increase the driving force for transformation. On the other hand, the ratio of nucleation rate to growth rate increases for lower strain rates (due to the higher number of nuclei that can be produced during an extended loading time) leading to the refined ferrite structure. However, as it was expected such behavior produces higher inhomogeneity in the final product. Multistage quasistatic compression tests and test using the Hopkinson Pressure Bar under different temperature, strain, and strain rate conditions, are used for verification of the proposed models

    The effect of shockwave profile shape on dynamic brittle failure

    No full text
    The role of shock wave loading profile is investigated for the failure processes in a brittle material. The dynamic damage response of ductile metals has been demonstrated to be critically dependent on the shockwave profile and the stress-state of the shock. Changing from a square to triangular (Taylor) profile with an identical peak compressive stress has been reported to increase the “spall strength” by over a factor of two and suppress damage mechanisms. The spall strength of tungsten heavy alloy (WHA) based on plate impact square-wave loading has been extensively reported in the literature. Here a triangular wave loading profile is achieved with a composite flyer plate of graded density in contrast to the square-wave loading. Counter to the strong dependence in wave profile in ductile metals, for WHA, both square and triangle wave profiles the failure is by brittle cleavage fracture with additional energy dissipation through crack branching in the more brittle tungsten particles, largely indistinguishable between wave profiles. The time for crack nucleation is negligible compared to the duration of the experiment and the crack propagation rate is limited to the sound speed as defined by the shock velocity
    corecore