116 research outputs found

    Anomalous Cognition: An Umbrella Review of the Meta-Analytic Evidence

    Get PDF
    Objective: The aim of this study was to assess the results of all meta-analyses on anomalous cognition conducted between 1989 and 2021 in order to find moderators associated with greater effect sizes. Method: We included all meta-analyses of studies related to anomalous cognition published up to 2021. Results: Our dataset, ac-cumulated over more than 80 years of investigation, refers to 11 meta-analyses related to six different states of consciousness. The evidence clearly shows that anomalous cognition seems possible and its effects can be enhanced by using a combination of some non-ordinary or altered states of consciousness (e.g., dreaming, ganzfeld, etc.), coupled with free-response procedures, or neurophysiological dependent variables. These conditions facilitate an alternative form of cognition seemingly unconstrained by the known biological characteristics of the sense organs and the brain. Conclusion: The accumulated evidence expands our understanding of the mind-brain relation and the nature of the human mind.Patrizio Tressoldi, Lance Stor

    A new method to detect event-related potentials based on Pearson's correlation

    Get PDF
    Event-related potentials (ERPs) are widely used in brain-computer interface applications and in neuroscience. Normal EEG activity is rich in background noise, and therefore, in order to detect ERPs, it is usually necessary to take the average from multiple trials to reduce the effects of this noise. The noise produced by EEG activity itself is not correlated with the ERP waveform and so, by calculating the average, the noise is decreased by a factor inversely proportional to the square root of N, where N is the number of averaged epochs. This is the easiest strategy currently used to detect ERPs, which is based on calculating the average of all ERP's waveform, these waveforms being time- and phase-locked. In this paper, a new method called GW6 is proposed, which calculates the ERP using a mathematical method based only on Pearson's correlation. The result is a graph with the same time resolution as the classical ERP and which shows only positive peaks representing the increase-in consonance with the stimuli-in EEG signal correlation over all channels. This new method is also useful for selectively identifying and highlighting some hidden components of the ERP response that are not phase-locked, and that are usually hidden in the standard and simple method based on the averaging of all the epochs. These hidden components seem to be caused by variations (between each successive stimulus) of the ERP's inherent phase latency period (jitter), although the same stimulus across all EEG channels produces a reasonably constant phase. For this reason, this new method could be very helpful to investigate these hidden components of the ERP response and to develop applications for scientific and medical purposes. Moreover, this new method is more resistant to EEG artifacts than the standard calculations of the average and could be very useful in research and neurology. The method we are proposing can be directly used in the form of a process written in the well-known Matlab programming language and can be easily and quickly written in any other software language

    EEG correlation at a distance: a re-analysis of two studies using a machine learning approach

    Get PDF
    Background: In this paper, data from two studies relative to the relationship between the electroencephalogram (EEG) activities of two isolated and physically separated subjects were re-analyzed using machine-learning algorithms. The first dataset comprises the data of 25 pairs of participants where one member of each pair was stimulated with a visual and an auditory 500 Hz signals of 1 second duration. The second dataset consisted of the data of 20 pairs of participants where one member of each pair received visual and auditory stimulation lasting 1 second duration with on-off modulation at 10, 12, and 14 Hz. Methods and Results: Applying a 'linear discriminant classifier' to the first dataset, it was possible to correctly classify 50.74% of the EEG activity of non-stimulated participants, correlated to the remote sensorial stimulation of the distant partner. In the second dataset, the percentage of correctly classified EEG activity in the non-stimulated partners was 51.17%, 50.45% and 51.91%, respectively, for the 10, 12, and 14 Hz stimulations, with respect the condition of no stimulation in the distant partner. Conclusions: The analysis of EEG activity using machine-learning algorithms has produced advances in the study of the connection between the EEG activities of the stimulated partner and the isolated distant partner, opening new insight into the possibility to devise practical application for non-conventional "mental telecommunications" between physically and sensorially separated participants

    EEG correlates of social interaction at distance

    Get PDF
    This study investigated EEG correlates of social interaction at distance between twenty-five pairs of participants who were not connected by any traditional channels of communication. Each session involved the application of 128 stimulations separated by intervals of random duration ranging from 4 to 6 seconds. One of the pair received a one-second stimulation from a light signal produced by an arrangement of red LEDs, and a simultaneous 500 Hz sinusoidal audio signal of the same length. The other member of the pair sat in an isolated sound-proof room, such that any sensory interaction between the pair was impossible. An analysis of the Event-Related Potentials associated with sensory stimulation using traditional averaging methods showed a distinct peak at approximately 300 ms, but only in the EEG activity of subjects who were directly stimulated. However, when a new algorithm was applied to the EEG activity based on the correlation between signals from all active electrodes, a weak but robust response was also detected in the EEG activity of the passive member of the pair, particularly within 9 – 10 Hz in the Alpha range. Using the Bootstrap method and the Monte Carlo emulation, this signal was found to be statistically significant

    Emergence of qualia from brain activity or from an interaction of proto-consciousness with the brain: which one is the weirder? Available evidence and a research agenda

    Get PDF
    This contribution to the science of consciousness aims at comparing how two different theories can explain the emergence of different qualia experiences, meta-awareness, meta-cognition, the placebo effect, out-of-body experiences, cognitive therapy and meditation-induced brain changes, etc. The first theory postulates that qualia experiences derive from specific neural patterns, the second one, that qualia experiences derive from the interaction of a proto-consciousness with the brain\u2019s neural activity. From this comparison it will be possible to judge which one seems to better explain the different qualia experiences and to offer a more promising research agenda

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog
    corecore