88 research outputs found

    Highly Sensitive Determination of Hydrogen Peroxide and Glucose by Fluorescence Correlation Spectroscopy

    Get PDF
    BACKGROUND: Because H(2)O(2) is generated by various oxidase-catalyzed reactions, a highly sensitive determination method of H(2)O(2) is applicable to measurements of low levels of various oxidases and their substrates such as glucose, lactate, glutamate, urate, xanthine, choline, cholesterol and NADPH. We propose herein a new, highly sensitive method for the measurement of H(2)O(2) and glucose using fluorescence correlation spectroscopy (FCS). METHODOLOGY/PRINCIPAL FINDINGS: FCS has the advantage of allowing us to determine the number of fluorescent molecules. FCS measures the fluctuations in fluorescence intensity caused by fluorescent probe movement in a small light cavity with a defined volume generated by confocal illumination. We thus developed a highly sensitive determination system of H(2)O(2) by FCS, where horseradish peroxidase (HRP) catalyzes the formation of a covalent bond between fluorescent molecules and proteins in the presence of H(2)O(2). Our developed system gave a linear calibration curve for H(2)O(2) in the range of 28 to 300 nM with the detection limit of 8 nM. In addition, by coupling with glucose oxidase (GOD)-catalyzed reaction, the method allows to measure glucose in the range of 80 nM to 1.5 µM with detection limit of 24 nM. The method was applicable to the assay of glucose in blood plasma. The mean concentration of glucose in normal human blood plasma was determined to be 4.9 mM. CONCLUSIONS/SIGNIFICANCE: In comparison with commercial available methods, the detection limit and the minimum value of determination for glucose are at least 2 orders of magnitude more sensitive in our system. Such a highly sensitive method leads the fact that only a very small amount of plasma (20 nL) is needed for the determination of glucose concentration in blood plasma

    Non Inflammatory Boronate Based Glucose-Responsive Insulin Delivery Systems

    Get PDF
    Boronic acids, known to bind diols, were screened to identify non-inflammatory cross-linkers for the preparation of glucose sensitive and insulin releasing agglomerates of liposomes (Agglomerated Vesicle Technology-AVT). This was done in order to select a suitable replacement for the previously used cross-linker, ConcanavalinA (ConA), a lectin known to have both toxic and inflammatory effects in vivo. Lead-compounds were selected from screens that involved testing for inflammatory potential, cytotoxicity and glucose-binding. These were then conjugated to insulin-encapsulating nanoparticles and agglomerated via sugar-boronate ester linkages to form AVTs. In vitro, the particles demonstrated triggered release of insulin upon exposure to physiologically relevant concentrations of glucose (10 mmoles/L–40 mmoles/L). The agglomerates were also shown to be responsive to multiple spikes in glucose levels over several hours, releasing insulin at a rate defined by the concentration of the glucose trigger

    Challenges and perspectives in continuous glucose monitoring

    Get PDF
    Diabetes is a global epidemic that threatens the health and well-being of hundreds of millions of people. The first step in patient treatment is to monitor glucose levels. Currently this is most commonly done using enzymatic strips. This approach suffers from several limitations, namely it requires a blood sample and is therefore invasive, the quality and the stability of the enzymatic strips vary widely, and the patient is burdened by performing the measurement themselves. This results in dangerous fluctuations in glucose levels often going undetected. There is currently intense research towards new approaches in glucose detection that would enable non-invasive continuous glucose monitoring (CGM). In this review, we explore the state-of-the-art in glucose detection technologies. In particular, we focus on the physical mechanisms behind different approaches, and how these influence and determine the accuracy and reliability of glucose detection. We begin by reviewing the basic physical and chemical properties of the glucose molecule. Although these play a central role in detection, especially the anomeric ratio, they are surprisingly often overlooked in the literature. We then review state-of-the art and emerging detection methods. Finally, we survey the current market for glucometers. Recent results show that past challenges in glucose detection are now being overcome, thereby enabling the development of smart wearable devices for non-invasive continuous glucose monitoring. These new directions in glucose detection have enormous potential to improve the quality of life of millions of diabetics, as well as offer insight into the development, treatment and even prevention of the disease

    Exercise management in type 1 diabetes:a consensus statement

    Get PDF
    Type 1 diabetes is a challenging condition to manage for various physiological and behavioural reasons. Regular exercise is important, but management of different forms of physical activity is particularly difficult for both the individual with type 1 diabetes and the health-care provider. People with type 1 diabetes tend to be at least as inactive as the general population, with a large percentage of individuals not maintaining a healthy body mass nor achieving the minimum amount of moderate to vigorous aerobic activity per week. Regular exercise can improve health and wellbeing, and can help individuals to achieve their target lipid profile, body composition, and fitness and glycaemic goals. However, several additional barriers to exercise can exist for a person with diabetes, including fear of hypoglycaemia, loss of glycaemic control, and inadequate knowledge around exercise management. This Review provides an up-to-date consensus on exercise management for individuals with type 1 diabetes who exercise regularly, including glucose targets for safe and effective exercise, and nutritional and insulin dose adjustments to protect against exercise-related glucose excursions

    Photonic hydrogel sensors

    Get PDF
    Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified

    Use of glucagon-like peptide-1 receptor agonistsfor pediatric patients with obesity and diabetes: the providers\u27 perspectives

    No full text
    Introduction: Glucagon-like peptide-1 receptor agonists(GLP-1RA) have been widely used in adults with type 2 diabetes (T2D) and obesity. We sought to evaluate the experience of pediatric endocrinology providers with GLP-1RA and factors that guide them on whether and how to prescribe these medications. Methods: We surveyed themembers of the Pediatric Endocrine Society regarding the use of GLP-1RA in their practice. Results: The respondents (n=102)were predominantly from academic centers (84%)and 75%reported using GLP-1RA in pediatric patients, mostly to treat T2D and obesity. Patient tolerance for the medication was reported to be the driving factor determining the duration of treatment. Gastrointestinal side effects were observed more commonly than local reactions or elevation of pancreatic enzymes. Lack of clinical experience was reported to be a major barrier for prescribing GLP-1RA, particularly among those with more than 5 years of clinical experience. Finally, liraglutide was used more often (93%) than other GLP-1RA. Conclusions: The use of GLP-1RAhas increased in pediatric patients. Recent FDA approval of liraglutide for pediatric obesity will likely further increase its prescription rate. Providers should be vigilant about side effects and adjust the doses of GLP-1RA accordingly. More efforts should be made by professional societies to educate pediatric endocrinology providers about the proper use of GLP-1RA and enhance their confidence in prescribing these medications. This article is protected by copyright. All rights reserved. Keywords: GLP-1RA; GLP1; obesity; type 1 diabetes; type 2 diabetes

    Embryonic exposure to excess thyroid hormone causes thyrotrope cell death

    No full text
    Central congenital hypothyroidism (CCH) is more prevalent in children born to women with hyperthyroidism during pregnancy, suggesting a role for thyroid hormone (TH) in the development of central thyroid regulation. Using the zebrafish embryo as a model for thyroid axis development, we have characterized the ontogeny of negative feedback regulation of thyrotrope function and examined the effect of excess TH on thyrotrope development. We found that thyroid-stimulating hormone β subunit (tshb) and type 2 deiodinase (dio2) are coexpressed in zebrafish thyrotropes by 48 hours after fertilization and that TH-driven negative feedback regulation of tshb transcription appears in the thyroid axis by 96 hours after fertilization. Negative feedback regulation correlated with increased systemic TH levels from the developing thyroid follicles. We used a transgenic zebrafish that expresses GFP under the control of the tshb promoter to follow thyrotrope fates in vivo. Time-lapse imaging revealed that early exposure to elevated TH leads to thyrotrope cell death. Thyrotrope numbers slowly recovered following the removal of excess TH. These data demonstrate that transient TH exposure profoundly impacts the thyrotrope population during a critical period of pituitary development and may have long-term implications for the functional reserve of thyroid-stimulating hormone (TSH) production and the TSH set point later in life
    corecore