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Abstract 47 

Type 1 diabetes (T1D) is challenging condition to manage for a variety of physiological and behavioural 48 

reasons. Regular exercise is important, however management of the different forms of activity is a 49 

particular struggle for both the individual with T1D and the health care provider. People with T1D tend 50 

to be at least as inactive as the general population, with a large percentage of individuals not 51 

maintaining a healthy body mass nor achieving the minimum number of minutes per week of moderate-52 

to-vigorous aerobic activity. Regular exercise can improve health and well-being and can help individuals 53 

to achieve their lipid, body composition, fitness and glycaemic goals. However, several additional 54 

barriers to exercise may exist for the person with diabetes including fear of hypoglycaemia, loss of 55 

glycaemic control, and inadequate knowledge around exercise management. This review provides an up 56 

to date consensus on exercise management for individuals with T1D who exercise regularly, including 57 

glucose targets for safe and effective exercise, and nutritional and insulin dose adjustments to protect 58 

against exercise-related glucose excursions.    59 
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Introduction 60 

Despite tremendous advances since the discovery of insulin almost 100 years ago, type 1 61 

diabetes (T1D) remains a challenging disease to manage (1,2). A majority of patients living with T1D are 62 

not at a healthy body weight (~60% are overweight or obese), suffer from hypertension (~40%) and/or 63 

dyslipidaemia (~60%) (3) and are not engaging enough regular physical activity (4). Regular exercise 64 

helps patient achieve a number of goals. It improves the cardiovascular disease risk profile in paediatric 65 

patients (5) and reduces HbA1c (-0.3%) in that particular segment of the patient population (6). Body 66 

composition, cardiorespiratory fitness, endothelial function and blood lipid profile (i.e. triglycerides, 67 

total cholesterol) all improve with regular physical activity in children and young people with T1D (7). 68 

These cardiometabolic improvements are all important, given that cardiovascular disease is the leading 69 

cause of morbidity and mortality in persons with T1D (8). In adults, both retinopathy and 70 

microalbuminuria are less common in those who are more physically active (9). Active adults with T1D 71 

tend to have better chance of achieving target HbA1c levels, blood pressure levels and a healthier body 72 

mass index when compared to inactive patients (3). Regular exercise also lowers total daily insulin needs 73 

(10). Having a high exercise capacity in adulthood with T1D is associated with less risk for coronary 74 

artery disease, myocardial ischaemia and stroke if you have diabetes or not (11). In a large cross 75 

sectional study of 18,028 adults with T1D, patients who fall in the most active category of physical 76 

activity levels (exercising two or more times per week) had better HbA1c levels, a more favourable body 77 

mass index, less dyslipidaemia, hypertension and fewer diabetes-related complications (retinopathy, 78 

microalbuminuria), compared to those who were less habitually active (3). In general, patients with T1D 79 

who are more active tend to have less diabetic ketoacidosis and less risk for developing severe 80 

hypoglycaemia with coma (3), except for with older women where this latter relationship is reversed; 81 

those most active have higher rates of severe hypoglycaemia (with coma) when compared with those 82 

who are inactive (3). However, several barriers may exist for exercise including: a fear of hypoglycaemia; 83 

a loss of glycaemic control, lack of time; access to facilities; lack of motivation; issues around body image 84 

and a general lack of knowledge around exercise management (12–14). 85 

The physical activity prescription for all adults living with diabetes, including those living with 86 

T1D, is 150 minutes of accumulated physical activity each week, with no more than 2 days in a row with 87 

no activity. Resistance exercise is also recommended two to three times a week. Getting this much 88 

exercise is difficult for a large majority of patients; with less than 20% of patients performing aerobic 89 

exercise more than two times per week and 60% of the patient population performing no structured 90 

exercise at all (3).  For children and adolescent, at least 60 minutes of physical activity should be 91 

performed per day (15). Physical inactivity and prolonged sitting times increase gradually with age and 92 

are linked to high HbA1c levels in youth with T1D (16) and inactivity appears to be more common in 93 

females than in males (3).  94 

Regular exercise should be encouraged and supported by health care professionals (HCPs), for a 95 

number of reasons, but primarily because the overall cardiometabolic benefits outweigh the immediate 96 

risks if certain precautions are made. In this review, the basic categories of exercise are described from a 97 

physiological perspective as are the starting points for nutritional and insulin dose adjustments to keep 98 

patients in a targeted glycaemic range. This review summarizes our consensus on the available 99 
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strategies that help incorporate exercise safely into the daily T1D management plan for those adults 100 

who are regularly engaging in exercise, sport and/or competitive events. It is hoped that these new 101 

guidelines for exercise management will improve patient control and engage more individuals with T1D 102 

to be more physically active. 103 

 104 

Search strategy and selection criteria 105 

We searched PubMed.gov and other relevant biomedical databases for articles pertaining to 106 

‘type 1 diabetes’ OR ‘insulin-dependent diabetes AND ‘exercise’ OR ‘physical activity’; published 107 

between 01/1990 to 07/2016 and filtered for human and restricted to English publications. Additional 108 

searches using the search terms ‘nutrition’ OR ‘dietary carbohydrate’ OR ‘dietary protein’ OR ‘glycemic 109 

index’ OR ‘hypoglycaemia’ OR ‘energy expenditure OR ‘glycemic control’ OR ‘management’ OR 110 

‘hypoglycemia’ OR ‘hyperglycemia’ OR ‘prevention & control’ were conducted for various subtopics 111 

within this review.  112 

 113 
Physiology of Physical Activity and Exercise 114 

Modalities of exercise 115 

Understanding the metabolic and neuroendocrine responses to the various types of exercise undertaken 116 

by people with T1D is critical for determining appropriate nutritional and insulin management 117 

strategies. Exercise is generally classified as aerobic or anaerobic, depending on the predominant energy 118 

systems used to support the activity, although a majority of exercise activities include a mix of energy 119 

systems. Aerobic exercise involves repeated and continuous movement of large muscle groups (e.g. 120 

walking, cycling, jogging, and swimming) that rely primarily on aerobic energy-producing systems. 121 

Resistance (strength) training is a type of exercise using free weights, weight machines, body weight, or 122 

elastic resistance bands that rely primarily on anaerobic energy-producing systems. High intensity 123 

interval training (HIIT), involves alternating between brief periods of vigorous exercise and recovery 124 

periods at low-to-moderate intensity (e.g., from 20 seconds to 4 minute intervals of exercise and rest, 125 

for up to ~10 cycles) (17). Both aerobic and resistance type activities are recommended for a majority of 126 

people living with diabetes (15,18) and recent guidelines also now incorporate HIIT as a training 127 

modality with established benefits for individuals with prediabetes or type 2 diabetes (18). In some 128 

studies, HIIT has been shown to be more effective than continuous aerobic training in improving 129 

cardiovascular fitness and various parameters related to glucose metabolism including insulin sensitivity 130 

and glycaemic control in type 2 diabetes (19). At present, it is unclear what form(s) of exercise are best 131 

for improving cardiometabolic control in type 1 diabetes (20). 132 

Neuroendocrine and metabolic responses to exercise 133 

Individuals without diabetes 134 
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The metabolic responses to different forms of exercise are distinct. However, in almost all forms of 135 

exercise, no matter the intensity or duration, blood glucose concentrations are normally held within a 136 

tight range (4-6 mmol/l). During aerobic exercise, insulin secretion drops and glucagon secretion rises in 137 

the portal vein to facilitate glucose release from the liver to match the rate of glucose uptake into the 138 

working muscles (21). Exercise can increase glucose uptake into muscle by up to 50-fold; a phenomenon 139 

independent of insulin signalling (22), so the drop in insulin in the circulation does not limit glucose 140 

provision to the working body. Although the main determinant of glucose production for aerobic 141 

exercise is a rise in glucagon levels, there is also neural control of glucose release and other 142 

counterregulatory hormones play a supportive role (23). With increased exercise duration, there is 143 

reduced reliance on muscle glycogen as fuel and a greater reliance on lipid oxidation and plasma-derived 144 

glucose (24). If insulin levels do not fall during aerobic exercise, the rise in counterregulatory hormones 145 

is less effective in promoting hepatic glucose production (21).  146 

As the intensity of exercise increases above ~50-60% of maximal oxygen consumption (VO2max), 147 

fat oxidation decreases, particularly in those who are untrained, and CHO are the preferred fuel (25). 148 

Prolonged high-intensity exercise is supported by both muscle glycogen and blood glucose utilization 149 

with minimal contributions from lipid and protein (26). During predominantly anaerobic activities (27) 150 

and during a HIIT session (28), circulating insulin concentrations do not drop as markedly as compared to 151 

purely aerobic activities, in part because the duration of activity is typically shorter. High rates of 152 

external power output during HIIT increase reliance on muscle phosphagens and glycogen, with lactate 153 

levels rising markedly in the circulation (28). Insulin levels increase above baseline levels in early 154 

recovery from a HIIT session to offset the rise in glucose caused by the elevations in counterregulatory 155 

hormones and other metabolites (27). 156 

 157 

Dysglycaemia during exercise in individuals with T1D 158 

In T1D, the glycaemic responses to exercise are influenced by the location of insulin delivery, the 159 

amount of insulin in the circulation, the pre exercise blood glucose concentration, the composition of 160 

the last meal or snack, as well as the intensity and duration of the activity (29) (Figure 1). 161 

During aerobic exercise, most individuals with T1D have a drop in glycaemia, unless 162 

carbohydrates (CHO) are ingested, because insulin levels cannot be lowered rapidly enough at the start 163 

of the activity, and levels may rise in the systemic circulation (30), perhaps because of increased 164 

subcutaneous adipose tissue blood flow during exercise (31). Even if basal insulin infusion rates are 165 

halved 60-min before the start of exercise in patients on continuous subcutaneous insulin infusion (CSII), 166 

circulating free insulin levels do not drop at exercise commencement and levels tend to rise transiently 167 

during the activity (32). Higher insulin levels in circulation during exercise promotes increased glucose 168 

disposal relative to hepatic glucose production, and may delay lipolysis, another feature that increases 169 

the muscles reliance on glucose as a fuel. Hypoglycaemia develops in a majority of patients within ~45 170 

minutes of activity (33,34). Trained individuals with T1D have greater reductions in blood glucose 171 

concentrations during aerobic exercise when compared to less fit patients (35), possibly because the 172 
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overall work rate is higher in those more aerobically conditioned. As such, both trained and untrained 173 

individuals with T1D typically require increased CHO intake, and/or insulin dose reduction, for prolonged 174 

aerobic exercise (see below). High intensity interval sprint training promotes increased oxidative 175 

capacity of skeletal muscle in T1D and attenuates the rates of glycogen breakdown (36), which may 176 

protect against post-exercise hypoglycaemia, at least in theory. Perhaps in line with this, individuals who 177 

are aerobically conditioned have reduced glucose variability compared to those unconditioned (37). Low 178 

insulin levels due to aggressive reductions in administration or a skipped insulin dose can cause 179 

hyperglycaemia prior to and during aerobic exercise (38) and ketosis may develop, even with mild 180 

activity (39).  181 

Compared to continuous moderate-intensity aerobic exercise, resistance exercise is associated 182 

with better glucose stability (40), although it may cause a modest rise in some individuals (41). 183 

Compared to aerobic exercise, performing a HIIT session attenuates the drop in glycaemia (42), as does 184 

performing resistance exercise before aerobic exercise (43), possibly because of increases in 185 

counterregulatory hormones and various metabolites that limit glucose disposal (44). In situations of 186 

brief and intense anaerobic exercise (e.g. sprinting, weight lifting, some competitive sports) (41,45), or 187 

during HIIT (28), glucose levels typically rise.  188 

 189 

Dysglycaemia post-exercise in individuals with T1D 190 

Immediately after aerobic exercise, glucose uptake into muscle drops but overall glucose disposal 191 

is still elevated for hours in recovery to help replenish glycogen stores (46). Hypoglycaemia risk is 192 

elevated for at least 24 hours in recovery from exercise with the greatest risk for nocturnal 193 

hypoglycaemia occurring after afternoon activity (47). As mentioned above, weight lifting, sprinting and 194 

intense aerobic exercise can promote elevations in glycaemia that may last for hours in recovery. 195 

Although a conservative insulin “correction” post-exercise may be prudent in some situations (48), over-196 

correction with insulin can promote severe nocturnal hypoglycaemia and death (49). HIIT appears to 197 

increase risk for nocturnal hypoglycaemia compared to continuous aerobic exercise in some (50), but 198 

not all (51,52) studies.  199 

 200 

Exercise Goals and Glycaemic Targets  201 

Individuals with T1D should perform exercise for a variety of health reasons. The evidence that 202 

regular exercise training improves metabolic control in adults with T1D is somewhat limited (20,53), 203 

although in youth it appears to be helpful (7). Exercise readiness questionnaires for adults with diabetes 204 

who may be at increased risk for adverse events can be found at eparmedx.com. Patient goals for 205 

exercise should be considered before making management decisions (e.g. metabolic control and 206 

prevention of complications, fitness, weight loss, competition/performance). This is a critical element of 207 

the diabetes management plan. For example, exercise for weight loss requires strategies that focus on 208 

reducing insulin levels during and after exercise, as opposed to consuming additional CHOs. By contrast, 209 

http://eparmedx.com/
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if maximising sports and exercise performance is the primary goal, then sport-specific nutritional 210 

guidance is needed and a modified insulin plan to match increased nutritional requirements should be 211 

considered (54). For all patients, blood glucose monitoring before, during and after exercise is critical for 212 

informing strategies and maintaining stable and safe glycaemia. 213 

The appropriate blood glucose concentration for the start of exercise should be individually 214 

tailored. Based on consensus, a reasonable starting range for most patients doing aerobic exercise 215 

lasting up to an hour is between 7-10 mmol/l. This range balances performance considerations against 216 

hypoglycaemia risk. Higher levels may be acceptable in some situations where added protection against 217 

hypoglycaemia is needed. Achieving and maintaining circulating glucose in this range is challenging. The 218 

glycaemic response to exercise is variable and based on several factors including the duration and 219 

intensity of exercise (44,55), the starting level of glycaemia (34), the individual’s aerobic fitness (35) and 220 

the amount of insulin in circulation (56,57) (Figure 1). Anaerobic and a HIIT session can be initiated with 221 

a lower starting glucose level (5-7 mmol/l) since glucose concentrations tend to remain relatively stable, 222 

fall to a lesser extent compared to continuous aerobic exercise, or rise slightly (Figure 1). Strategies to 223 

cope with a range of glucose concentrations near the start of exercise are provided in Table 1. If glucose 224 

level is too high because of insulin omission, risk of ketosis and further hyperglycaemia can occur (39) 225 

and work effort probably rises. Although it is unclear if there is an optimal glycaemic range for exercise 226 

performance, clinical experience and limited field study investigation (58) suggest that maintaining a 227 

concentration between ~6.0-8.0 mmol/l may be ideal.   228 

 229 

Contraindications and cautions for exercise 230 

While few exercise limitations should be placed on patients, some considerations are important:  231 

A. Ketones 232 

 Elevated blood ketones (≥1.5 mmol/l) before a bout of exercise should be addressed prior to 233 

the start of the session via insulin administration and/or CHO feeding (Table 1). The cause of 234 

elevated ketone levels should be identified (illness, diet manipulation, a recent bout of 235 

prolonged exercise, insulin omission, etc.). Both prolonged endurance type activities 236 

(marathons, trekking, etc.) and very low CHO diets can elevate blood ketone levels in 237 

patients and the HCP should define appropriate levels and provide tailored guidance for 238 

each individual. Blood ketone levels of ≥ 3.0 mmol/l should be managed immediately by a 239 

qualified HCP (e.g. emergency department, physician, etc.). 240 

B. Recent hypoglycaemia 241 

 Severe hypoglycaemia (defined here as a blood glucose ≤2.8 mmol/l or a hypoglycaemic 242 

event requiring assistance from another individual) within the previous 24 hours is a 243 

contraindication to exercise, due to the significant increased risk of a more serious episode 244 

during the exercise (59). Where minor hypoglycaemia (blood glucose 2.9-3.9 mmol/l, with 245 
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the ability to self-treat) has occurred, the increased risk of a recurrence must be taken into 246 

account (60). Vigilance around monitoring should be stressed and exercise should be 247 

avoided if the setting is deemed particularly unsafe (e.g. swimming/trekking alone). 248 

C. Diabetes-related complications 249 

 Overall the health benefits of being physically active outweigh the risks of being sedentary 250 

for people with diabetes. Those with complications can derive numerous health benefits 251 

from lower intensity physical activities, with little risk for any adverse events (61). In those 252 

with long-standing disease, or with HbA1c levels well above target, vigorous exercise, heavy 253 

weight-bearing activities and competitive endurance events are contraindicated, particularly 254 

if the patient has unstable proliferative retinopathy, severe autonomic dysfunction or renal 255 

failure (61). 256 

D. Failure to be prepared for exercise-associated hypoglycaemia 257 

 In preparation for exercise, individuals with T1D should be aware of their starting glucose 258 

concentrations, have blood glucose monitoring equipment and snacks to treat 259 

hypoglycaemia. They should also be advised to wear/carry diabetes identification.  260 

 261 

Nutritional Management 262 

Goals for nutritional management  263 

Nutritional management for people with T1D should incorporate strategies that optimise 264 

glycaemic control, while promoting long-term health (62). The main strategies around nutrition for 265 

exercise and sport discussed in this section are primarily to maximise athletic performance and are 266 

based largely on studies conducted in highly trained healthy individuals without diabetes (63), with 267 

limited studies in people with T1D. The application of these strategies must consider the individual’s 268 

insulin management plan and specific advice targeting nutrition for both athletic performance and 269 

glycaemic management (see Glycaemic Management section below). A registered dietitian with 270 

specialist diabetes and sports knowledge is the most qualified to help active people with T1D. 271 

An individualised meal planning approach is central to improving performance and glycaemic 272 

outcomes. Daily CHO intake should relate to the fuel cost of training in the athletic subpopulation and 273 

hypoglycaemia prevention for all active people. Balancing insulin dose to CHO intake during exercise is 274 

essential. A variety of CHO and insulin adjustment strategies can be used, such as reducing the pre-275 

exercise bolus insulin dose by 30-50% up to 90 minutes before aerobic exercise (64),  consuming high 276 

glycaemic index (GI) CHO (30-60g /hour) during sport or replacing CHO post-exercise for anaerobic 277 

exercise. Personal tolerance of ingested CHO particularly during exercise is a key factor in individualising 278 

recommendations. The distribution of macronutrient intake over the day should take into account the 279 

timing of exercise so that liver and muscle glycogen stores are maximised before the activity and 280 
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replenished in early recovery (63). This strategy should include CHO feeding well before exercise (~4 281 

hours) and early in recovery (63,65). 282 

 283 

Daily energy and macronutrient balance  284 

Athletes with T1D need sufficient energy to meet the demands of their daily activity. These will 285 

vary with age, sex, body composition and activity type (66). Total energy requirements differ with 286 

individual aims. Predictive equations can be used to estimate resting energy expenditure (67); however 287 

they should serve only as a guide as they may over or underestimate actual requirements. An 288 

appropriate macronutrient balance and micronutrient intake (63), coupled with a glycaemic control 289 

strategy, is required to maximise performance. The optimal macronutrient distribution will vary 290 

depending on an individualised assessment and exercise goals. A guide to the distribution of the total 291 

daily energy intake is 45-65% CHO, 20-35% fat and 10-35% protein, with higher protein intakes indicated 292 

for individuals wanting to lose weight (68). 293 

The major nutrients required to fuel performance are CHOs and lipids, while the addition of 294 

protein is needed to help foster recovery and maintain nitrogen balance (63,69). Protein requirements 295 

range from 1.2- 1.6 g/kg body weight (BW) /day and will vary with training type and intensity and CHO 296 

availability (63,70). Higher intakes may be needed for recovery from injury or for individuals on energy 297 

restricted diets (71) to maintain lean body mass.  298 

 299 

CHO needs before, during and after exercise 300 

Distinction should be made between CHO needs for performance and CHO required for 301 

hypoglycaemia prevention (Table 2). CHO requirements will alter insulin management strategies and 302 

vice versa. The majority of studies in T1D investigate the amount and distribution of CHO to prevent 303 

hypoglycaemia rather than to optimise performance, although the two may be at least partially related 304 

(34,64,72,73). As an example, although only 15-20 grams/hr of CHO may be required to prevent 305 

hypoglycaemia in people who reduce their insulin levels in anticipation of exercise; this amount of CHO 306 

may be insufficient for performance. It has been shown that it is possible to implement larger CHO 307 

supplementation (up to 75g/hr) for prolonged competition greater than 2.5 hours (marathons and other 308 

endurance type races) without adversely impacting glycaemia as long as insulin dose is titrated 309 

appropriately (54). In general, CHO requirements during shorter, intermittent high intensity and 310 

anaerobic activities can be much less (Table 2). 311 

 312 

Nutritional needs for recovery 313 

Post-exercise nutrition requirements to maximise muscle recovery and muscle protein synthesis 314 

have been well studied in the athletic population without diabetes (74). For replenishment of glycogen 315 
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content after exercise, CHO intake is essential (63). For athletes with T1D, it is important to ensure rapid 316 

and adequate replenishment of muscle and liver glycogen stores to help prevent late-onset 317 

hypoglycaemia. Glycogen replacement strategies may also be important to help prevent euglycaemic 318 

ketosis in exercise recovery (75). Ingesting protein (~20-30 grams) in addition to CHO in the post-319 

exercise period is beneficial for muscle protein synthesis, but it does not appear to facilitate glycogen 320 

replenishment, at least in non-diabetic athletes (63).  321 

 322 

Role of high and low GI foods for maintenance of euglycaemia 323 

 The GI of a CHO-rich food can be used to assist with the selection of CHO type for exercise; with 324 

high GI sports drinks and gels providing rapidly released CHO to increase blood glucose levels during 325 

endurance events and for the treatment of hypoglycaemia. Low GI foods have been suggested pre-326 

exercise to sustain CHO availability and maintain euglycaemia, while higher GI meals/snacks consumed 327 

post-exercise may enhance recovery. Low and moderate GI snacks may also be preferred for long 328 

distance activities (like trekking and long distance cycling) at low to moderate workloads. Low GI CHO 329 

(isomaltose) consumed 2 hours before a high intensity run showed improved blood glucose responses 330 

during exercise compared to a high GI CHO (dextrose) (76). A low GI meal and bedtime snack consumed 331 

after evening exercise prevented postprandial hyperglycaemia compared to a high GI meal and snack, 332 

with both meal types protective against hypoglycaemia for ~8 hours (77). Protection beyond 8 hours 333 

with a snack is lost and hypoglycaemia risk remains significant (77).  334 

 335 

Fluid Replacement 336 

Adequate fluid intake before, during and after exercise is necessary to avoid dehydration and for 337 

optimal performance (65). Water is the most effective drink for low intensity and short duration sports 338 

(i.e. ≤ ~45 min), as long a glucose levels are at or above target (≥7 mmol/l). Sports beverages containing 339 

CHO (6-8%) and electrolytes are useful for athletes with T1D in longer duration, higher intensity exercise 340 

as a hydration and fuel source and to prevent hypoglycaemia (34,78). However, it is important to ensure 341 

these are not over consumed as this can result in hyperglycaemia. Milk-based drinks containing CHO and 342 

protein can assist recovery and prevent delayed hypoglycaemia (73).   343 

 344 

Low-CHO high-fat diets and exercise 345 

People with T1D may choose a low-CHO high-fat (LCHF) diet for a variety of reasons. A recent 346 

review on LCHF diets and sports performance in subjects without T1D concluded that despite increasing 347 

the muscles’ ability to utilise fat over time, there was no evidence of performance benefits (79). Long-348 

term studies have yet to be conducted on the health, glycaemia, or performance effects of LCHF diets in 349 

T1D. A concern with these diets is that they may impair the capacity for high intensity exercise (80).  350 
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Variation in CHO intake (i.e. periodisation throughout the training cycle according to fuel needs 351 

and performance) has been suggested by some researchers as a way to help promote skeletal muscle 352 

adaptation to training (81). Additionally, various exercise-nutrient protocols (i.e. training in a fasted 353 

state or withholding CHO intake at meal before or after exercise) are used to manipulate CHO 354 

availability. These approaches have not been studied in individuals with T1D where manipulation of 355 

dietary CHO as part of training presents unique challenges for insulin therapy and requires careful 356 

glucose monitoring. 357 

 358 

Sports nutritional aids and T1D 359 

The use of ergogenic aids is a widespread performance enhancement strategy used by athletes. 360 

The evidence for ergogenic aids on performance is limited in athletes with T1D. 361 

Caffeine intake in athletes without diabetes has shown improvements in endurance capacity 362 

and power output (82). Caffeine intake (5-6 mg/kg body mass) before exercise attenuates the drop in 363 

glycaemia during exercise in individuals with T1D but may increase late-onset hypoglycaemia risk (83). 364 

 365 

Glycaemic Management Recommendations 366 

There is high between- and within-patient variability in glucose responses to the various forms 367 

and intensities of exercise (Figure 1); therefore glycaemic management is based on frequent glucose 368 

monitoring, adjustments to both basal and/or bolus insulin dosing and the consumption of CHOs during 369 

and after exercise. These recommendations are intended to serve as a starting point for insulin 370 

adjustments and CHO intake that can then be individualised (Figure 2).  371 

Clinical management strategies should be built around exercise types and individual aims and 372 

implemented, taking into account the factors summarised in Table 3. Generally, sustained aerobic 373 

exercise requires more substantial reductions in insulin dose and/or higher CHOs than a shorter-term 374 

HIIT session. In stark contrast, brief anaerobic exercise (sprinting, weight lifting) may require increased 375 

insulin delivery, which is typically given in early recovery rather than before exercise for obvious safety 376 

reasons (48). Strategies for insulin dose adjustments and/or CHO intake during and after planned 377 

exercise are presented in Table 4. 378 

 379 

Insulin adjustment for prolonged activities: bolus insulin approaches 380 

Pre-exercise meal insulin bolus dose reductions and/or additional CHO consumed during 381 

exercise are typically needed to avoid hypoglycaemia during prolonged exercise (>30 minutes) 382 

(34,55,64,84–86). Bolus dose reductions require pre-planning and are probably only appropriate for 383 

exercise with a predictable intensity performed within 2-3 hours after a meal. As shown in Table 5, the 384 
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extent of mealtime dose reduction is proportional to both the intensity and duration of the activity. This 385 

approach is safe and effective; even reducing the bolus insulin dose by as much as 75% does not appear 386 

to increase ketone production during exercise (86). 387 

Another strategy is to combine the reduction of the pre-exercise insulin bolus dose (by 75%) 388 

with the ingestion of a low GI snack/meal (87). Importantly, this method also reduces the risk of pre-389 

exercise hyperglycaemia. However, protection against hypoglycaemia with this approach is lost if the 390 

exercise is performed an hour or more after the snack (87). As such, this combined approach may be 391 

preferable only for early postprandial exercise.  392 

 393 

Basal insulin approaches 394 

Late postprandial hypoglycaemia (4+ hours after a meal) following aerobic exercise is driven 395 

partly by circulating basal insulin concentrations.  Elevated insulin sensitivity post-exercise, and perhaps 396 

a blunting of glucose counterregulation appear to place individuals at risk for at least 12 hours. Reducing 397 

circulating basal insulin levels can ameliorate this risk. For patients on multiple daily insulin injections 398 

(MDI), clinical observations and limited experimental data (88) demonstrate that reducing long acting 399 

basal (as well as prandial) insulin before exercise reduces hypoglycaemia risk during and after the 400 

activity, but may promote hyperglycaemia at other points during the day. Therefore reduction in basal 401 

insulin dose for MDI patients should not be routinely recommended but may be a therapeutic option for 402 

those having unusual days with considerably more planned activity (e.g. camps, tournaments). In 403 

general, basal insulins with a relatively short half-life such as NPH-insulin or insulin detemir seem to lead 404 

to less hypoglycaemia in conjunction with exercise when compared to longer basal insulins such as 405 

glargine (89), although the mechanism for this is unclear. While ultra-long acting insulins (e.g. insulin 406 

degludec with a 25hr half-life) pose similar risks for hypoglycaemia with endurance exercise to that of 407 

insulin glargine (90), dose reductions for exercise would have to be implemented at least 48 hours 408 

before planned exercise. This is not recommended, as it would compromise overall control. 409 

CSII offers flexibility to modify basal infusion delivery and to obtain a relatively quick effect 410 

(within ~1-2hrs) (91). Suspension of basal insulin infusion at the onset of 60-min exercise reduces 411 

hypoglycaemia risk during the activity, but it may increase post-exercise hyperglycaemia risk (92). 412 

Moreover, glucose levels may still drop 2-3 mmol/l over 30-60 minutes even when basal insulin is 413 

dramatically reduced (or completely suspended) (64,92,93), due to the lag time in the change in 414 

circulating insulin levels. Where practical, a basal rate reduction, rather than suspension, should be 415 

attempted well before the start of exercise (60-90 minutes). An 80% basal reduction at the onset of 416 

exercise helps mitigate post-exercise hyperglycaemia, compared to basal suspension, and appears to be 417 

associated with reduced hypoglycaemic risk both during and after the activity (64). However, the 418 

optimal timing of basal rate insulin reductions for aerobic and HIE activities and the maximal safe 419 

duration for insulin pump suspension is unclear and remains open to debate. To limit the risk of 420 

compromised glycaemic control and ketosis a time limit of <2hours is proposed based on rapid acting 421 

insulin pharmacokinetics (91).  422 
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Post-exercise hyperglycaemia is a common complaint for patients doing intense exercise, 423 

particularly if insulin levels are reduced. CSII seems to offer advantages over MDI in managing early 424 

post-exercise hyperglycaemia (94) and late-onset post-exercise hypoglycaemia (95), due to the 425 

increased flexibility around basal insulin adjustments. Overcorrection of post-exercise hyperglycaemia 426 

via repeated insulin dose administration results in increased risk for severe late-onset hypoglycaemia, 427 

which may even be fatal (49). 428 

 429 

Strategies to reduce the risk of post-exercise late-onset hypoglycaemia 430 

Increased insulin sensitivity lasts up to 24-48 hours following exercise (46). Very few studies 431 

have tested various nutrient or insulin dose adjustments to prevent hypoglycaemia after exercise. 432 

Nocturnal hypoglycaemia after exercise is a major occurrence for individuals with T1D (96), with 433 

increased risk for afternoon exercise (47,97). Immediate increases in post-exercise insulin sensitivity can 434 

be accommodated for by reductions in the bolus insulin at the meal after exercise by ~50%, along with a 435 

low GI snack at bedtime (77). In one study of 16 youth, a ~20% temporary pump basal rate reduction 436 

from bedtime for 6 hours reduced nocturnal hypoglycaemia risk (95). Similarly, in another study of ten 437 

males on MDI, a 20% basal rate reduction on the exercise day along with a “free” CHO snack at bedtime 438 

(0.4 g CHO/kg body mass) reduced hypoglycaemia risk overnight (88). Individuals at high risk of severe 439 

nocturnal hypoglycaemia (e.g., recurrent hypoglycaemia, and those sleeping alone), should take 440 

additional preventive measures including blood glucose checks at 2-3AM and/or use a real time CGM 441 

system with alarms and automatic pump suspension (98). A snack alone, without changes to basal 442 

insulin therapy, does not appear to entirely eliminate nocturnal hypoglycaemia risk (77) and alcohol 443 

intake may increase risk (99). 444 

 445 

Glucose monitoring, CGM and other emerging tools for exercise management 446 

A range of treatment regimens exists for people with T1D. CSII offers better flexibility in basal 447 

insulin adjustments and the management of exercise-associated hyperglycaemia (100). CSII is associated 448 

with reduced post-exercise hyperglycaemia compared to MDI (94), but can create frustrating challenges 449 

for sports requiring pump disconnection (101). CSII can also contribute to a greater sense of being 450 

“diseased” for some individuals and may promote stigma (101). Prolonged pump disconnect (> 60 451 

minutes) should be managed with reconnecting, testing and re-infusion if necessary, or a change to 452 

basal insulin provision by needle. CGM provides comprehensive information on blood glucose levels, 453 

real-time trends in glucose levels and rates of glucose change in glucose, which can be used to prevent 454 

lows during exercise (102), even in unique settings when self-monitoring of blood glucose (SMBG) is 455 

difficult to perform (103). Current sensors are reasonably accurate for exercise (104,105); however, the 456 

lag time in glucose equilibrium with the interstitial space and the rapid turnover in glucose during 457 

exercise may impact accuracy (i.e. overestimate glucose value when levels are dropping and 458 

underestimate it when levels are rising) (106,107). 459 
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Structured educational sessions can be implemented using downloads of SMBG, CGM and CSII 460 

(108). CGM now offers the option to add “followers” who can view glucose levels in real time and 461 

potentially alert the patient while he/she is playing sports. Threshold suspension of insulin delivery in 462 

CSII may offer additional protection against exercise-associated hypoglycaemia according to some 463 

limited data (109). The development of a fully artificial pancreas for exercise remains an elusive goal 464 

(110).  465 

Summary 466 

Regular physical activity should be a routine objective for patients with type 1 diabetes for a 467 

variety of health and fitness reasons. Considerable challenges remain for the person with T1D, and their 468 

HCP team, in exercise/sports management.  A number of small observational studies and a limited 469 

number of clinical trials have been published to date that help to inform the consensus 470 

recommendations here. More studies are needed to determine how to best prevent exercise-associated 471 

hypoglycaemia with basal rate insulin dose adjustments and how to manage in the post-exercise 472 

recovery period. In general, aerobic exercise is associated with reductions in glycaemia while anaerobic 473 

exercise may be associated with a transient rise in glucose levels. Both forms of exercise can cause 474 

delayed-onset hypoglycaemia in recovery. A sound understanding of the physiology of different forms of 475 

exercise and the variables that can influence glycaemia during exercise and sport should underpin the 476 

implementation of safe and effective glycaemic management strategies. For aerobic exercise, reductions 477 

in insulin administration before the activity (basal and/or bolus) can help ameliorate hypoglycaemia risk, 478 

as can increasing CHO intake to 60 grams per hour or more. For anaerobic exercise, conservative insulin 479 

dose corrections may be required, although this too may increase the risk for nocturnal hypoglycaemia, 480 

particularly if the exercise is performed late in the day. In all instances, more vigilance around glucose 481 

monitoring is needed before, during and after the activity.  482 
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Table 1. Pre-exercise blood glucose concentrations and initial glucose management strategies. 493 
Starting blood glucose 

concentrations 

General Recommendations* 

Below Target 

(<5 mmol/l) 

▪ Ingest 10–20 g of glucose before starting exercise 

▪ Delay exercise until blood glucose > 5mmol/l (90 mg/dL) and monitor 

closely for hypoglycaemia 

Near target 

(5-6.9mmol/l) 

▪ Ingest 10 g of glucose before starting aerobic exercise 

▪ Anaerobic exercise and HIIT sessions can be started 

Target 

(7-10mmol/l) 

▪ Aerobic exercise can be started 

▪ Anaerobic exercise and HIIT sessions can be started but glucose levels 

may rise 

Slightly above target 

10.1-15.0 mmol/l) 

▪ Aerobic exercise can be started 

▪ Anaerobic exercise can be started but glucose levels may rise  

Above target 

(>15 mmol/l) 

▪ If the hyperglycaemia is unexplained (not associated with a recent 

meal), check blood ketones. If ketones are modestly elevated (up to 

1.4 mmol/l), exercise should be limited to a light intensity for only a 

brief duration (<30 minutes) and a small corrective insulin dose may 

be needed before the exercise begins. If blood ketones are elevated 

(≥1.5mmol/l), exercise is contraindicated and management should be 

initiated rapidly as per the advice of the HCP/team. 

▪ Mild to moderate aerobic exercise may be started if blood ketones 

are low (<0.6 mmol/l) or if urine ketones are less than 2+. Blood 

glucose levels should be monitored during exercise to help notify if 

glucose is rising further. 

▪ Intense exercise should be initiated only with caution as it may 

promote a further rise in glycaemia. 

*Note: The CHO intake amounts shown here are to help with glucose stability at the start of exercise. For aerobic 494 

activities lasting greater than 30 minutes, additional CHOs will likely be needed (see Table 2). Blood glucose levels 495 

at the start of exercise must also be viewed within a wider context. Factors to consider include directional trends in 496 

glucose concentrations, insulin levels, patient safety and individual patient preferences based on experience. CHO 497 

intake will need to be higher if circulating insulin levels are high at the onset of exercise. See Nutritional 498 

Management section. HIIT= high intensity interval training.  499 

  500 
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Table 2 CHO requirements for endurance (aerobic) exercise performance and hypoglycaemia prevention 501 

Situation 

Endurance exercise 
performance 
(Athletes with and 
without diabetes) 
 

Hypoglycaemia 
prevention under low 
insulin conditions 
 

Hypoglycaemia 
prevention under high 
insulin conditions 
 

Pre-exercise meal (low 
fat, low GI)  

A minimum of 1g 
CHO/kg BW according 
to exercise intensity 
and type 

A minimum of 1g 
CHO/kg BW according 
to exercise intensity 
and type 

A minimum of 1g 
CHO/kg BW according 
to exercise intensity 
and type 

Immediately pre-
exercise (high GI) 

No CHO required for 
performance 

If BG < 5mmol/l ingest 
10-20g CHO 

If BG < 5mmol/l ingest 
20-30g CHO 

Up to 30 min duration 
No CHO required for 
performance 

If BG < 5mmol/l ingest 
10-20g CHO 

May require 15-30g 
CHO to prevent or treat 
hypoglycaemia 

30- 60 min duration 
 

Small amounts of CHO 
(10-15 g/hr) may 
enhance performance 

Low- moderate 
intensity (aerobic):  
Small amounts of CHO 
(10-15 g/hr) depending 
on the exercise 
intensity and BG  May require up to 15-

30g CHO/30 min to 
prevent hypoglycaemia 

High intensity 
(anaerobic):  
No CHO required during 
exercise unless BG is < 5 
mmol/l then ingest 10-
20g CHO.  Replace CHO 
needs post-exercise. 

60- 150 min duration 
 

30-60g CHO/hr 

30-60g CHO/hr to 
prevent hypoglycaemia 
and enhance 
performance 

Up to 75 g CHO/hr to 
prevent hypoglycaemia 
and enhance 
performance* 

> 150 min duration 
(Mixture of CHO 
sources) 

60-90g CHO/hr spread 
across the activity (e.g. 
20-30g CHO/20 min) 
 
Use CHO sources that 
utilize different gut 
transporters (e.g. 
glucose and fructose) 
 

 
Follow sports nutrition guidelines (60-90g/hr) with 
appropriate insulin adjustment for glycaemic 
management  

Post- exercise meal 
  
 

1-1.2g CHO/kg body BW  
Follow sports nutrition guidelines to maximise 
recovery with appropriate insulin adjustment for 
glycaemic management 

Note: These guidelines are based on the following references (63,111,112) and on the expert opinion of the 502 

authors. BW= body weight, BG= blood glucose concentration. * Note: CHO consumption at a high rate may cause 503 

gastric upset in some individuals and may contribute to hyperglycaemia during and after the activity. To increase 504 

CHO absorption rate during exercise, and maintain hydration status, sport beverages containing glucose and 505 

fructose may be preferable.  506 
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Table 3 Examples of factors that need to be considered before making adjustments for exercise. 507 
Factor Effect 

Subcutaneous insulin injection and its adjustments  Difference in injection site and depth affect 
insulin absorption characteristics (113,114).  

 Lipodystrophy. 

 Misunderstanding of insulin pharmacokinetic 
often leads to inappropriate insulin 
adjustments, including excessive insulin 
corrections (stacking), which may be 
particularly dangerous after exercise. 

 Rapid acting (30), regular and intermediate 
acting (115,116), but likely not long acting 
(117) insulin absorption rates are increased 
with exercise. 

CHO intake  Variation in CHO quantity (including 
inaccuracy to evaluate intake) and type will 
impact glycaemic excursions (118). 

Self-monitored capillary glucose measurements 
and CGM 

 Errors in SMBG sampling or measurement 
errors (SMBG, CGM) may result in 
inappropriate insulin dose estimations 
(119,120). 

 CGM accuracy, while improving, can be 
compromised by poor SMBG accuracy and 
calibrations methods (121). 

 Lag time in CGM may impact accuracy during 
exercise (104,106). 

Medications/ alcohol  Insulin sensitivity may be impacted (99) as 
might glucose monitoring tools (120). 

Physiological cycles  Diurnal endocrine variation, menstrual cycle 
and pregnancy impact insulin sensitivity and 
impact glycaemic patterns (122). 

Changes in work and sleep patterns  Require changes in timing of insulin basal 
dose administration. 

 Timing of exercise should be considered 
relative to insulin sensitivity and nocturnal 
hypoglycaemia risk (47). 

Intercurrence illness and stress  May require changes in both basal and bolus 
insulin dose (123). 

 Vigorous exercise contraindicated. 

 508 
  509 
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Table 4. Therapeutic adjustment options (insulin and/or food intake) to minimize glycaemic excursions for 510 
prolonged aerobic and brief high intensity aerobic/anaerobic exercise. 511 
Adjustment Prolonged endurance exercise 

(predominantly aerobic) 
Brief intense exercise (aerobic 
and anaerobic) 

Pre- exercise meal bolus dose 
insulin reduction 

Advised when exercise occurs 
within ~120min of bolus dose 
The magnitude of reduction vary 
according to timing, type, 
duration and intensity of exercise 
(see Table 5) 

Bolus reduction not advised 
May require additional 
conservative bolus dose 
correction if hyperglycaemia 
develops 

Pre-exercise basal insulin dose 
reduction in (MDI patients) by 
~20% 

Useful especially if exercise 
occurs less than every 3 days or if 
exercise levels are elevated 
throughout the day 
May also be useful if on twice 
daily intermediate insulin 

Basal reduction not advised  

Basal nocturnal insulin dose 
reduction (MDI & CSII) following 
exercise by ~20% to reduce 
nocturnal hypoglycaemia 

Particularly important if the 
exercise occurred in the 
afternoon or early evening 

Useful for helping limiting post-
exercise hypoglycaemia after a 
HIIT session 
 

Temporary basal rate change 
(CSII) 

Reduce basal rate to as low as 
total suspension of normal basal 
during exercise 
To take into account rapid acting 
insulin pharmacokinetics, this 
basal rate reduction should 
ideally occur well before exercise 
start (up to 90 minutes before) 
Normal basal rates can be 
resumed either at the end of 
exercise, or later in recovery 
depending on glucose trends 

Increased basal rate may be 
needed to help prevent/treat 
hyperglycaemia either during or 
immediately after exercise 

Pre-exercise CHO intake See Table 2 Not usually needed 

Intra-exercise CHO intake Typically up to 60g/h if no insulin 
dose adjustments have been 
made 
See Table 2 for additional 
information 

Not usually needed 

Pre-exercise or post-exercise 
sprint 

May help reduce hypoglycaemia 
risk 

May increase hyperglycaemia 
risk 
Consider a prolonged aerobic 
cool down 

Post-exercise CHO intake Useful to reduce risk of 
hypoglycaemia and enhance 
recovery (see Nutritional 
Management section) 
May need a specified insulin 
bolus depending on length and 
intensity of exercise (may need a 
reduced insulin to CHO ratio) 

Useful to reduce risk of 
hypoglycaemia and enhance 
recovery but should be delayed if 
hyperglycaemia is initially 
observed (see Nutritional 
management section) 
May need a specified insulin 
bolus strategy (e.g. may need a 
reduced insulin to CHO ratio) 
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Table 5: Suggested pre-exercise meal bolus percent reduction for exercise started within 90min of a meal.  512 
 Exercise duration 

 
Exercise intensity 

30 minutes 60 minutes 

Mild aerobic 
(~25%VO2max) 

- 25%* - 50% 

Moderate aerobic 
(~50% VO2max) 

- 50% - 75% 

Heavy aerobic 
(70-75% VO2max) 

- 75% N-A 

Intense aerobic/anaerobic 
(>80% VO2max) 

No reduction recommended N-A 

Notes: Recommendations based on the following references (51,55,72,124); N-A: Not assessed, since the exercise 513 
intensity is typically too high to sustain for 60min for most individuals; * Estimated from the 60min study. 514 

  515 
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Figure 1: Blood glucose trends and different forms of exercise. High patient variability exists in the 858 

blood glucose responses to different form of exercise, as denoted by the arrows and grey shading. In 859 

general, aerobic exercise lowers glycaemia, anaerobic exercise raises glycaemia and mixed activities is 860 

associated with relative glucose stability. The individual responses depend on a number of additional 861 

factors including the duration/intensity of the activity; initial blood glucose level; individual fitness; 862 

levels of insulin, glucagon, other counterregulatory hormones in circulation; and the nutritional status of 863 

the individual. 864 

 865 

Figure 2: Decision tree for aerobic exercise and mixed aerobic and anaerobic activities lasting 30 min 866 

or longer. This decision tree can serve as a starting point for decision-making for aerobic exercise. 867 

Notes: 1 Mixed activities that include anaerobic bursts of exercise may require less carbohydrate intake 868 

and/or less insulin dose reductions compared continuous moderate aerobic activities. If both resistance 869 

and aerobic exercise are to be performed, suggest performing resistance first to help attenuate the drop 870 

in glycaemia. 2 In some situations, increased carbohydrate feeding rather than insulin dose reduction 871 

may help improve endurance performance in prolonged activities. 3 In other situations, both bolus and 872 

basal insulin dose reductions may be preferred to help limit CHO needs. Consider CGM where patient or 873 

parent preference dictates, or with history of nocturnal or severe hypoglycaemia.  874 


