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Abstract 
Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing 

platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be 

rationally designed and fabricated through self-assembly, microfabrication or laser writing. The 

advantages of photonic hydrogel sensors over conventional assay formats include label-free, 

quantitative, reusable, and continuous measurement capability that can be integrated with 

equipment-free text or image display. This review explains the operation principles of photonic 

hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview 

of qualitative and quantitative readout technologies. Applications in clinical samples are 

discussed, and potential future directions are identified. 

 

Keywords: hydrogels; in vitro diagnostics; photonic crystals; inverse opals; holography; Bragg 

stacks; crystalline colloidal arrays; block copolymers; layer-by-layer deposition; plasmonics 
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1. Introduction 

1.1 The Need for Photonic Sensors 

The in vitro diagnostics (IVD) market was valued at $53.3 B in 2013 and projected to reach 

$69.1 B by 2017 (Markets&Markets, 2013, Shields and Sale, 2014). While the global IVD 

market is expected to grow at a compound annual growth rate (CAGR) of 5.4% until 2020, the 

emerging markets (Brazil, China, and India) are projected to experience 10-15% growth 

(GrandViewResearch, 2014, Park, 2014, Rosen, 2014). This growth is mainly driven by (i) the 

shift to personalized medicine, (ii) the need for minimally invasive rapid diagnostics, (iii) aging 

populations in the developed world, and (iv) geographical market expansion and the increase in 

the demand from emerging economies due to infectious and chronic diseases (Akram et al. , 

2015, Yetisen et al. , 2015b). Although the market is restrained by stringent regulations 

(Mansfield et al. , 2005), there is a growing number of commercial products such as diagnostic 

tests for HIV, hepatitis, HPV, diabetes, blood coagulation, fertility, immunoassays, hematology, 

urinalysis, molecular diagnostics, and blood gas analyses (Roche, 2014, Siemens, 2014). 

The fastest growing segments of the IVD market are molecular diagnostics and point-of-care 

(POC) testing, which attracted $650 million in investments over the past five years 

(KaloramaInformation, 2014, Parmar, 2013, St John and Price, 2014). The expansion of POC 

diagnostics may be attributed to the government policies to reduce high-cost healthcare 

provisions by decreasing the number of patients in secondary and tertiary hospitals (Price and 

Kricka, 2007). POC diagnostics consist of small benchtop or handheld devices that provide 

qualitative and semi-quantitative information of target analytes in the field or at home (Chin et 

al. , 2012). Benchtop products include critical care analyzers, as well as hematology and 

immunology assays. Handheld devices consist of blood glucose tests, dipsticks for urinalysis and 

lateral-flow tests (Yetisen et al. , 2013). These handheld devices are simple, rapid, robust in 

storage and usage, and low cost. Thus, they are universally applicable for disposable and 

sensitive point-of-care diagnostics. The sensing mechanisms of handheld point-of-care 

diagnostics are based on molecular probes, enzymes, antibody-antigen interactions, and 
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electrochemistry. Dipstick tests such as urine test strips utilize molecular dyes and enzymatic 

reactions. Such assays are multiplexed and allow the analyses of up to 12 biomarkers. Recently, 

new capabilities have been proposed for these formats to execute multistep processes (Cate et al. 

, 2015). A significant limitation of assays based on molecular dyes is that they have different 

absorption peaks in the visible spectrum (Martinez et al. , 2008). The interpretation of such 

assays may be erroneous due to the subjective readouts of calibration charts and uneven 

development of colors throughout the assay. Their semi-quantitative readouts require handheld 

analyzers. Additionally, the number of analytes and molecular reactions that can be combined 

with chromogens is limited. Hence, standardization of color shift in the visible spectrum and 

expansion to a broad range of analytes are significant challenges in molecular dye based assays 

(Yetisen, 2015f). Furthermore, while the colorimetric information is universal, some applications 

require written readouts for reporting the concentration of a target analyte. The lateral-flow 

format is typically based on immunochromatography involving immobilized antibodies and 

functionalized gold nanoparticles, which were originally designed for qualitative readouts. 

Recently, newer capabilities were introduced to this platform to obtain semi-quantitative 

readouts. For example, ClearblueDigital Pregnancy Test (Swiss Precision Diagnostics) offers on-

chip quantification of chorionic gonadotropin (hCG) to estimate the conception date (Pike et al. , 

2013). Among the over the counter products, blood glucose monitoring is the largest market 

segment due the prevalence of 382 million diagnosed diabetics worldwide (Danaei et al. , 2011, 

DiabetesAtlas, 2013). Glucose assays are based on enzymes such as glucose oxidase (GOx), 

glucose dehydrogenase (GDH) or hexokinase, which are read out by handheld devices. However, 

such electrochemical and enzymatic assays are prone to error due to interference from high 

partial pressure of oxygen, maltose, and hematocrit (Tonyushkina and Nichols, 2009). 

Additionally, these assays do not allow real-time or on-demand reusable measurements due to 

the irreversibility of reactions and assay configurations. The development of all-in-one platforms 

that can report on the concentrations of target analytes by either utilizing the entire visible 

spectrum, or producing written information or display images without electrical components are 

needed to create low-cost, robust and quantitative point-of-care diagnostics. 

The limitations of the existing sensors have motivated the investigation of label-free 

structural color platforms that quantitatively report on the concentration of target analytes (Zhao 

et al. , 2010a). Structural coloration was first observed by Robert Hooke and Isaac Newton in 

peacock feathers and mother of pearl (nacre) (Hooke, 1665, Newton, 1704). To understand 

structural coloration, Thomas Young demonstrated that light could behave like a wave, 

producing diffraction from sharp edges or slits (Young, 1804). A wide array of mechanisms has 

evolved to create diverse optical structures, including multilayer reflectors, photonic crystals, and 

light scattering structures (Fudouzi, 2011, Zhao et al. , 2012). These structural colors also 

coincidentally form in composite and fibrous structures (Martinez-Hurtado et al. , 2013, 

Vignolini et al. , 2012, Vukusic and Sambles, 2003). Structural coloration in nature occurs 

mainly through diffraction, but also refraction, plasmonics, or a combination of both, sometimes 

complementing pigments. The fundamentals of dynamic coloration in photonic structures in 

nature represent a potential for constructing transducers that can be modulated by physical 

changes. 

Structural color-based transducers have advantages over traditional signal processing 

approaches in terms of response-range tuning and label-free reporting. Advances in photography, 

polymer chemistry, laser physics, and organic synthesis have enabled bottom-up and top-down 

fabrication of photonic structural colors. Hence, the developments in photonic structures have set 
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the stage for the incorporation of structural colors in analyte-sensitive hydrophilic polymers 

(hydrogels) for sensing applications. In contrast to the absorption of light by chromophores and 

electrochemistry, photonic hydrogel sensors incorporate nanostructures that modulate the optical 

properties of incident light. Such photonic structures can be created in/on hydrogels through self-

assembly or laser writing techniques. Upon interacting with a target analyte, hydrogels undergo 

volumetric changes, which affect the physical and/or optical properties of the photonic 

structures. These photonic structures serve as transducers to quantify the concentration of 

analytes through changes in spatial periodicity in their dielectric constants, plasmonic resonance 

shifts, or effective refractive index. They typically modulate the optical characteristics of 

electromagnetic waves by filtering out certain regions of wavelengths, a phenomenon called the 

photonic band gap (PBG), which typically occurs in 1D Bragg gratings as well as 2D and 3D 

colloidal photonic crystals (Joannopoulos et al. , 2011). However, the filtering mechanism of 

these sensors may include Fabry-Pérot interferometer (etalon), or thin film effects. 

This Review presents the operation principles of photonic hydrogel sensors. It describes the 

syntheses of analyte-sensitive hydrogel matrixes and explains bottom-up and top-down 

nano/microfabrication methods to incorporate structures within hydrogels that act as optical 

transducers. The technical challenges in sensor fabrication are identified, and pre-clinical and 

clinical performance evaluations are presented. This Review also discusses how photonic 

hydrogel sensors can address IVD market needs. The perceived limitations of photonic hydrogel 

sensors in building commercial products are identified, and potential future directions are 

described. 

 

1.2 Historical Development of Diffraction Gratings in Hydrogels 

Experimentation with gels in optics began in the 19
th

 century. Frederick Archer invented the 

collodion process, which utilized albumen (egg white) photographic prints (Archer, 1851, 

Blanquart-Evrard, 1847). To improve the collodion process, Richard Maddox reported a method 

to create photographic images in gelatin (Maddox, 1871). Two decades later, Gabriel Lippmann 

introduced a technique to create color photographs based on interference of light (Lippmann, 

1894). Lippmann projected an image onto a silver bromide containing photographic emulsion, 

which was backed by a mirror of liquid mercury. The light reflected back by the mirror created 

standing waves in the emulsion. This latent image was later photographically developed to 

produce periodic silver planes. When illuminated with a broadband light source, the Lippmann 

plate replayed a colored image via diffraction. After the development of the principle of 

holography in the 1940s (Gabor, 1948, Gabor, 1949) and invention of laser in the 1950s 

(Maiman, 1960), Yuri Denisyuk of the former Soviet Union, and Emmett Leith and Juris 

Upatnieks in the United States created 3D holographic gratings in gelatin in the 1960s 

(Denisyuk, 1962, Leith and Upatnieks, 1962). In parallel to the developments in holography, 

hydrogel chemistry also made significant advances (Loh and Scherman, 2012). Poly(N-

isopropylacrylamide) polyacrylamide were first synthesized in Rohm & Haas Company 

(Philadelphia, PA) (Specht et al. , 1956); however, its thermal expansion properties in aqueous 

solutions was realized after a decade (Heskins and Guillet, 1968). In the former Czechoslovakia, 

Otto Wichterle and Drahoslav Lím developed poly(2-hydroxyethyl methacrylate) (pHEMA) for 

application in soft contact lenses (Wichterle and Lim, 1960). 

The advantages of incorporating diffraction gratings in polymers matrixes have been realized 

by Thomson-CSF (France) (Loiseaux et al. , 1984). This approach involved forming a medium 

consisting of suspended dielectric nanoparticles (~20 nm) in a monomer solution. Standing 
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waves consisting of high (antinodes) and low (nodes, no disturbance) energy induced by 

holographic optical forces moved the nanoparticles into periodic regions. Subsequently, 

nanoparticles were fixed to their positions by polymerizing the monomer solution. It was not 

until 1990s that the use of holographic gratings in biosensing applications was proposed by 

Christopher R. Lowe at the University of Cambridge (Lowe et al. , 1995). Holograms were used 

as recording media to create diffraction gratings in functionalized hydrogel matrixes and the 

principle of operation of hydrogel-based optical sensors was demonstrated. Independently 

Sanford Asher at the University of Pittsburgh have developed crystalline colloidal arrays (CCAs) 

for narrow-band filtering devices in the visible spectrum and UV (Asher, 1986). In their earlier 

work, the liquid dispersion was contained in a thin planar cell within walls of transparent plastics 

or glass. However, a significant challenge with the utilization of the CCAs was their fragility, 

and the arrays were affected from vibration, temperature changes, and ionic influences. Hence, in 

the 1990s, CCAs have been incorporated in hydrogel films (Haacke et al. , 1993). Based on this 

platform, Asher and co-workers developed hydrogel sensors based on CCAs (Asher and Holtz, 

1998). Hence, along with the advances in recognition agents, photonic hydrogel sensors opened 

up opportunities for in vitro diagnostics. 

 

1.3 The Prospects for Photonic Hydrogel Sensors 

Photonic structures embedded in hydrogels that change their water content and volume upon 

interacting with a specific analyte represent a new platform to construct IVD devices. Hydrogels 

are 3D polymer networks capable of undergoing reversible volume changes as their Donnan 

osmotic pressure changes (Imran et al. , 2010, Miyata, 2010). Hydrogels can be synthesized to be 

sensitive to a range of clinically relevant analytes (Banwell et al. , 2009, Cai et al. , 2015, Ehrbar 

et al. , 2008, Ehrick et al. , 2005, Kloxin et al. , 2009, Lendlein et al. , 2005, Stuart et al. , 2010, 

Um et al. , 2006). These hydrogels consist of bioactive recognition molecules that selectively 

respond to external stimuli via producing physical or chemical changes in the hydrogel matrix 

(Buenger et al. , 2012, Loh and Scherman, 2012). Functionalized hydrogels can be used as a 

medium to incorporate photonic structures for optical signal transduction and reporting within 

one device. Numerous bottom-up or top-down nano/microfabrication methods have been 

developed to create photonic structures in miniaturized and multiplexed formats (Zhao, Zhao, 

2010a). Upon interacting with a target analyte, the volumetric change in the hydrogel is reported 

through modulations of reflection, diffraction, refraction, surface plasmon resonance, or emission 

(Gerlach and Arndt, 2009). These optical changes act as a transducer, allowing various light 

properties to be analyzed spectroscopically and correlated with the concentration of the analyte. 

Additionally, photonic hydrogel sensors can be tuned to report visually-distinguishable color 

changes that can be semi-quantitatively determined without equipment. The most important 

advantage of photonic hydrogel sensors over established assay formats is that they do not rely on 

labels or electrochemistry to report on the concentration of a target analyte; hence, they are 

immune to marker bleaching, signal drifts, and electromagnetic interference. Photonic hydrogel 

sensors (i) incorporate functionalized polymers to respond to a target analyte, (ii) offer reversible 

real-time measurement of analytes, (iii) can be tuned to report the concentration of analytes 

colorimetrically from ultraviolet to near-infrared, and (iv) are compatible with readout devices 

for quantitative measurements. These photonic hydrogels may also have optically active 

elements with capabilities in displaying three-dimensional (3D) images or writing (Naydenova et 

al. , 2008). Hence, the development of photonic hydrogel sensors has immense potential for both 
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equipment-free semi-quantitative diagnostics and quantitative analyzers that are compatible with 

mobile spectrophotometers and smartphone readers (Burgess et al. , 2013, Yetisen, 2015e). 

The potential applications of photonic hydrogel sensors are not limited to medical 

diagnostics, but also include veterinary testing, pharmaceutical bioassays, and biohazard and 

environmental monitoring. However, the main focus area of hydrogel sensors has been in the 

detection and/or quantification of chemicals and cells in medical diagnostics. For example, their 

potential applications in biochemistry and biology are monitoring enzyme activity and 

metabolites (Tian et al. , 2014), and serum albumin ligand binding (Cai et al. , 2014). Another 

potential area of application of photonic hydrogel sensors includes the detection of 

biocontaminants, heavy metals, and nanoparticles in water or air. The development of 

environmental sensors is aligned with the strict regulations imposed by the European Union, the 

United States, and other countries as well as companies operating in the developing world. 

Reusable hydrogel-based sensing of environmental contaminants is an emerging area that can 

significantly reduce the costs and turnaround time at resource-limited settings. 

 

2. Photonic Band-Gap Hydrogels  

Bragg diffraction of light from nanoscale periodic structures can be designed to be dependent on 

the presence of analytes in a controlled way and therefore can be employed to create sensors 

reporting from ultraviolet to near-infrared (Ge and Yin, 2011). Periodic structures within 

hydrogel matrixes can be formed using nanostructures, or can consist of different block 

copolymers or layers of polyelectrolytes. The specificity of such sensors is achieved by 

functionalizing the hydrogel matrix with chelating agents or ligands pre- or post-polymerization 

(Zhao, Zhao, 2010a). Bottom-up and top-down fabrication techniques include laser-directed 

writing of gratings (Yetisen et al. , 2014f), colloidal self-assembly (Cai, Smith, 2015), pore 

etching (DeLouise et al. , 2005), spincoating (von Freymann et al. , 2013), block-co-

polymerization (Kim et al. , 2010), and layer-by-layer deposition (Kotov, 1999). 

  

2.1. Holographic Sensors 

Holograms can be used as analytical devices to quantify the humidity content and biomolecule 

concentration (Blyth et al. , 1996, Lowe, Millington, 1995, Millington et al. , 1996, Spooncer et 

al. , 1992). Holographic sensors incorporate multilayer Bragg diffraction gratings in 

functionalized hydrogel matrixes. Altering the lattice spacing, the effective refractive index, 

and/or the refractive index modulation of the Bragg grating changes the characteristics of the 

diffracted or transmitted light (Yetisen, 2015a). For example, in reflection holograms, swelling 

or shrinking of the polymer matrix shifts the Bragg peak to longer or shorter wavelengths, and 

the change in the position of the Bragg peak is correlated with the concentration of the analyte 

that is being measured (Figure 1a). The diffraction grating in the hologram acts as a reporter 

allowing changes in the color to be monitored semi-quantitatively by eye, or quantitatively using 

a spectrophotometer or a smartphone camera. The advantage of holographic sensors over other 

photonic hydrogel sensors is the ability to accurately fabricate the structure via tuning the optical 

properties of the Bragg grating using laser light. 

 

Figure 1. Holographic sensors. (a) The modulation of Bragg diffraction gratings in reflection 

holographic sensors as a function of pH. An increase in pH swells the hydrogel matrix and 

expands the lattice spacing of the grating, shifting the diffracted light to longer wavelengths. (b) 

Fabrication of holographic sensors by silver halide chemistry and laser writing. (c) Colorimetric 
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response of holographic carboxylated pHEMA pH sensor. Reprinted with permission from 

(Yetisen et al. , 2014a). Copyright, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. (d) 8-

hydroxyquinoline-functionalized Pb
2+

 ions. Reprinted with permission from (Yetisen et al. , 

2015a). Copyright, American Chemical Society. (e) pHEMA ethanol sensor. Reprinted with 

permission from (Yetisen et al. , 2014g), Copyright, The Royal Society of Chemistry. (f) 

Poly(acrylamide-co-vinylalcohol) humidity sensor with image displaying capabilities. Reprinted 

with permission from (Naydenova, Jallapuram, 2008) Copyright, American Institute of Physics. 

 

The design of a holographic sensor involves determining (i) monomers to construct a 

hydrogel matrix, (ii) a bioactive recognition group, and (iii) an image recording technique 

(Yetisen, 2015d). Commonly used monomers include 2-hydroxyethyl methacrylate (HEMA), 

acrylamide (AAM), vinyl alcohol (VA), and siloxane. These monomers can be polymerized over 

a silanized glass or an O2 plasma-treated plastic substrate in the presence of crosslinkers using 

photo or thermal initiators such as 2,2-dimethoxy-2-phenylacetophenone (DMPA) and 

N,N,N′,N′-tetramethylethylenediamine (TEMED) (Tsangarides et al. , 2014). A range of 

functional groups can be added to the monomer mixture to create specificity for target analytes. 

Potential functional groups include carboxylic acid, crown ethers, 8-hydroxyquinoline, porphyrin 

and phenyl boronic acid derivatives (Kabilan et al. , 2004, Marshall et al. , 2003, Mayes et al. , 

2002, Yetisen, Qasim, 2014g). Functional groups can also be introduced after polymerization 

through a DCC-initiated condensation reaction by forming amide linkages (Yetisen, Montelongo, 

2015a). Alternatively, sensitivity to analytes can also be achieved by introducing nanoparticles 

(zeolites) to the monomer mixture (Leite et al. , 2010a, Leite et al. , 2010b, Zaarour et al. , 2014). 

The fabrication of holographic sensors involves forming diffraction gratings in the hydrogel 

matrix. Depending on the hydrophilicity of the polymer matrix, silver halide chemistry, high-

energy laser patterning, or photopolymerization can be used to record the photonic structure. The 

early holographic sensors were recorded by silver halide chemistry (Millington, Mayes, 1996). In 

gelatin emulsions, silver halides are prepared when the gelatin is molten in aqueous conditions, 

and coated over a substrate as thin film. However, this strategy is not universally applicable due 

to the immiscibility of some monomer species with water. Hence, a diffusion method was 

developed for doping the hydrogel matrixes with Ag
+
 ions (Blyth et al. , 1999). Typically, under 

safelighting, Ag
+
 ions are converted to AgBr nanocrystals using aqueous LiBr in the presence of 

photosensitizers (Marshall, Blyth, 2003). Subsequently, the recording medium is exposed to laser 

light to produce a latent image, which can be later converted to Ag
0
 nanoparticles using a 

photographic developer (Figure 1b). 

Holographic sensors can also be recorded by using intense pulses of laser light (Yetisen et al. 

, 2014e). For example, high-energy frequency doubled Nd:YAG (Nd-Yttrium-Aluminum-

Garnet) ns pulsed lasers or other high-energy lasers can be used to create reflection holograms 

(Martinez-Hurtado et al. , 2010). The typical laser energy output of such lasers is 300 mJ with a 

pulsed laser operating at 532 nm. However, low-cost Q-switched lasers for tattoo removal can 

also be used. In contrast to silver halide holography, high-energy patterning does not require 

formation of silver halide nanocrystals. This fabrication method consists of the impregnation of 

the hydrogel matrix with a light-absorbing material and laser exposure of the recording media to 

form diffraction gratings, allowing the use of any light-absorbing material in the hydrogel 

matrix. For example, Ag
+
 ions can be perfused into the hydrogel matrix, and reduced in situ 

using a photographic developer to Ag
0
 nanoparticles (Ø=50-100 nm). Nanoparticles of this size 

absorb in a wavelength range overlapping with the laser emission wavelength at 532 nm. 
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Similarly, other metal nanoparticles (i.e. gold or iron), pigments, dyes, and carbon nanotubes can 

be used to produce the gratings (Vasconcellos et al. , 2014, Zhao et al. , 2015a). The interaction 

of laser light with nanoparticles might result in reduction in particle size, oxidation, modification 

in the crystal structure or morphology, further crosslinking, or diffusion in the antinode or node 

regions, which may contribute to reorganizing the nanoparticles in the hydrogel matrix (Yetisen, 

Butt, 2014a). 

Holographic sensors can also be constructed using photopolymers (Mikulchyk et al. , 2014). 

A significant advantage of photopolymers over silver halide chemistry and high-energy 

patterning is the ability to achieve high diffraction efficiency. Photopolymer-based holographic 

sensors are typically constructed from acrylamide and vinyl alcohol (Mikulchyk et al. , 2013, 

Naydenova, Jallapuram, 2008, Naydenova et al. , 2009). To fabricate the hologram, a mixture of 

monomers, crosslinker, photoinitiator and sensitizers are coated over a substrate. The resulting 

hydrogel matrix is exposed to an interference pattern to create a multilayer photonic structure. 

When the light is absorbed at the antinode regions of the standing wave, the monomers undergo 

free radical chain polymerization. Hence, this process locally changes the refractive index and 

the polarization of the molecules. The spatial variation in the intensity of the interference pattern 

is recorded as a variation of refractive index. 

Holographic sensors have been utilized to sense ions, metabolites, enzymes, drugs, 

microorganisms, and other clinically relevant stimuli (Yetisen, Naydenova, 2014f) (Table 1). 

Earlier research in holographic sensors focused on the development of pH sensors (Marshall, 

Blyth, 2003). Functionalization with acidic or basic groups allowed the hydrogel matrix to swell 

and shrink due to the change in Donnan osmotic pressure as the pH of the system was varied 

(Figure 1c). The monomers that can be incorporated in holographic pH sensors include 

methacrylic acid (MAA), trifluoromethyl propenoic acid (TFMPA), dimethylaminoethyl 

methacrylate (DMAEM), and vinyl imidazole to detect the pH from 2.0 to 9.0 to achieve 0.01 pH 

unit sensitivity. A limitation of these hydrogel-based pH sensors is that they are affected by 

changes in ionic strength. Holographic sensors can also be utilized in the quantification of 

mono/divalent metal ions for the detection of electrolytes in clinical chemistry.  

Holographic sensors were functionalized with methacrylated crown ethers to sense K
+
 ions 

(Mayes, Blyth, 2002). A holographic sensor containing 18-crown-6 (50 mol%) allowed sensing 

K
+
 ions (≤30 mM) within 30 s. Recently, newer receptors such as porphyrin derivatives were 

incorporated into holographic sensors for the detection of divalent metal ions (Yetisen, Qasim, 

2014g). Holographic sensors consisting of porphyrin derivatives as chelating agents responded to 

Cu
2+

 and Fe
2+

 ions within the concentration range of 0.05-1.00 mM in 30 s. However, these 

sensors were insensitive to divalent metal ions below 10 mM (Yetisen, 2015c). The same sensors 

were also used to sense alcohols as the concentration of ethanol was varied from 4 to 10 % (v/v) 

(Figure 1d). Another recent holographic sensor featuring 8-hydroxyquinoline (8HQ) as a 

chelating agent for Pb
2+

 ions was shown to have a dynamic range of 0.1-10.0 mM with a limit of 

detection of 11.4 μM (Figure 1e) (Yetisen, Montelongo, 2015a). Holographic sensors 

incorporating boronic acid derivatives were shown to be sensitive to glucose. 3-

(acrylamido)phenylboronic acid (3-APB) (pKa = ∼ 8.8) binds to carbohydrates by forming 

reversible covalent bonds through its cis-diol units (Kabilan, Blyth, 2004, Kabilan et al. , 2005). 

The principle of operation was based on the change in Donnan osmotic pressure, which shifts the 

Bragg peak to longer wavelengths in the presence of carbohydrates (Yetisen, 2015b). 

Holographic sensors also have the capability to incorporate images (Naydenova, Jallapuram, 

2008). Holographic humidity sensors were fabricated in acrylamide photopolymer in Denisyuk 
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reflection mode (Figure 1f). After breathing over the holographic sensor, the change in the 

diffracted light provided a qualitative and quantitative readout of the relative humidity (RH) in 

the environment. The color change was observed within seconds after changing the RH, and this 

process was reversible. Images can be incorporated within holographic sensors by displaying a 

different image upon interacting with a target analyte. 

 

Table 1. The quantification capabilities of holographic sensors in medical diagnostics 

 

2.2. Crystalline Colloidal Array Sensors 
Periodic colloidal crystals based on microparticles can restrict the propagation of photons within 

a certain range of wavelengths – the photonic bandgap. In nature, such structures are found in 

opals, in which amorphous silica particles are periodically arranged. The optical characteristics 

of the diffracted light from colloidal crystals depend on the particle order, size, and the refractive 

index of the particles and their surrounding medium. CCAs embedded in hydrogels represent a 

colorimetric and reversible sensing technology for applications in IVD (Zhao, Zhao, 2010a). 

CCAs consist of three-dimensionally ordered polystyrene or poly(methyl methacrylate) (PMMA) 

nanoparticles that self-assemble into a body-centered cubic (BCC) or face-centered cubic (FCC) 

lattice due to electrostatic repulsion between the monodisperse, highly charged particles. With a 

mesoscopic periodicity of 0.1-1.0 μm, the CCA forms single crystals that Bragg-diffract visible 

light (Figure 2a) (Carlson and Asher, 1984, Rundquist et al. , 1989). The diffracted light is 

monochromatic and can be tuned in the visible spectrum (Figure 2b). 

 

Figure 2. Crystalline colloidal array (CCA) sensor. (a) The principle of operation that obeys 

Bragg’s law. (b) Scanning electron microscopy image of CCAs showing face centered cubic 

(FCC) array. Scale bar = 2 μm. Reprinted with permission from (Sai et al. , 2013) Copyright, the 

Royal Society of Chemistry. (c) Monodisperse, highly charged polystyrene or PMMA spheres 

synthesized through emulsion polymerization that (d) undergo electrostatic repulsion and self-

assemble to form FCC lattices, with subsequent (e) monomer mixture photopolymerized around 

the CCA (f) The diffracted light from CCAs can be tuned in the visible spectrum by changing the 

concentrations of the silica nanoparticles. Reprinted with permission from (Ye et al. , 2011) 

Copyright, American Chemical Society. (g) Colorimetric response of molecularly imprinted 

CCA sensors as the concentration of p-nitrophenol was increased from 0 to 30 mM. Reprinted 

with permission from (Xue et al. , 2014b) Copyright, The Royal Society of Chemistry 

 

The synthesis of monodisperse, highly charged polystyrene or PMMA spheres (100 nm) can 

be achieved through emulsion polymerization (Reese et al. , 2000) (Figure 2c). A solution (~8 wt 

% colloids) was combined with a monomer mixture and allowed to equilibrate (Figure 2d). 

CCAs were then fabricated by the co-polymerization of monodisperse nanoparticles and 

monomers to immobilize the array suspension (Figure 2e) (Asher et al. , 1994). The CCA lattice 

spacing and subsequent diffracted wavelength depends on the concentration of the CAA and 

hydrogel volume. The diffracted light peak can be tuned by varying the concentration of the 

colloidal nanoparticle solution (Figure 2f). For example, a change of 0.5% in the hydrogel 

volume shifted the diffraction by ~1 nm (Holtz and Asher, 1997). 

By incorporating different recognition sites, CCAs have been used for several applications in 

IVD. The CCA materials can be functionalized with chelating agents and ligands. Hydrogels 

consist of greater than 85% water, which allows target analytes to freely diffuse into the CCA 
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matrix to bind to the recognition group with diffusion constants that can be approximated by 

those in water (Asher et al. , 2002). As the recognition group in the hydrogel matrix binds to 

target analytes, the Donnan osmotic pressure of the hydrogel matrix increases (or decreases) by 

absorbing more (or less) water. The changes the hydrogel volume is thus directly proportional to 

the concentration of the target analyte (Holtz and Asher, 1997, Holtz et al. , 1998). This volume 

change shifts the diffracted Bragg peak to longer wavelengths, which can be correlated with the 

analyte concentration. The color change can be semi-quantatively interpreted by eye, or 

quantitatively analyzed using a spectrophotometer. Therefore, CCAs offer a practical and 

equipment-free approach to IVD that can be used in the field to obtain rapid analyses.  

The volume-phase transition of carboxylated CCA acrylamide-based hydrogels in response 

to pH and ionic strength changes has been monitored (Lee and Asher, 2000). The pH sensor 

operated from pH 2-11 and produced a ~250 nm shift in the Bragg peak. The shift due to Na
+
 

ions (10 mM) was 200 nm at pH 8.1. A volume-phase model was also developed to predict pH 

and ionic strength dependence of hydrogel swelling. This enabled the design of materials for 

optimal pH and ionic strength sensors by using functional groups that ionize in various pH 

ranges or that show no pH dependent ionization. 

Crown ethers were attached to the polyacrylamide CCA hydrogel to selectively bind Pb
2+ 

ions (Asher, Peteu, 2002). The measurement of blood lead concentration has diagnostic 

applicability in plumbism (lead poisoning). The reference range for acceptable blood lead 

concentration (BLC) is 0.5-1.0 µmol/L (Kratz, 2004). In lead poisoning, BLC exceeds 0.97 

mmol/L (Haslam, 2003). Lead encephalopathy, more common in children than adults, is 

diagnosed at blood lead concentrations from 4.83-14.49 mmol/L (Trope et al. , 2001). The 

immobilization of Pb
2+

 ions in the CCA increased the influx of their counterions, which 

increased the Donnan osmotic pressure and swelled the hydrogel in proportion to the 

concentration of bound Pb
2+

 ions (Asher, Peteu, 2002). A red-shifted Bragg diffraction acted as a 

sensor for quantification of the concentration of Pb
2+

 ions in low ionic strength solutions. 

However, in high ionic strength solutions, the Donnan osmotic pressure from Pb
2+

 ion chelation 

was saturated by non-specific interaction with other cations in the solution, and the sensors 

become ineffective. To overcome this challenge, the CCAs were incubated in a sample solution, 

and their transient response was measured after rinsing the sensor with pure water. Since the 

non-complexed counterions diffuse out of the CCA matrix more quickly than the bound Pb
2+

 

ions, this transient diffraction shift was proportional to the concentration of Pb
2+

 ions. CCAs 

sensed Pb
2+

 ions in high ionic-strength environments such as body fluids with a detection limit of 

100 ppb. For lead concentrations greater than 10 μM, the CCA color change was visible to the 

unaided eye. To detect lower concentrations of Pb
2+

 ions in high ionic strength, an optode 

sensing device was developed (Reese and Asher, 2003). This device consisted of a probe 

assembly containing the CCA sensing material, a diode array spectrometer, and a fiber optic 

reflectance probe. The optode might allow for the rapid removal of non-complexed ions present 

in biological samples. Recently, a CCA sensitive to thiocyanate ions (SCN
-
) has been 

synthesized (Ma et al. , 2013). Polystyrene-co-poly(N,N-dimethylacrylamide) (PS-co-PDMAA) 

microspheres consisting of PS core and PDMAA shell have been prepared by emulsion 

polymerization (Xiao et al. , 2004). To construct the array, 3D self-assembly of a CCA was 

induced by centrifugation. Consequently, the CCA was tested in a plate groove. As the 

concentration of SCN
-
 ions increased from 8.6 to 860 nmol/g, the Bragg peak linearly red shifted 

290 and 60 nm, respectively. The red shifts of other anions (8.6 nmol/g) were greater than 95 
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nm. While this assay provided broader operational wavelength ranges as compared to the 

polymerized CCAs, this assay required centrifugation for each experiment. 

Polyacrylamide CCAs containing creatinine deiminase enzyme and 2-nitrophenol titrating 

group were used to detect and quantify creatinine, a marker of renal dysfunction, in human blood 

serum samples (Sharma et al. , 2004). When creatinine diffused into the hydrogel matrix, it 

became hydrolyzed by the creatinine deiminase enzyme, creating hydroxyl groups and increasing 

the local pH, which deprotonated a second recognition agent, 2-nitrophenol. The deprotonated 

phenolate exhibited enhanced solubility, swelled the hydrogel matrix and red shifted the Bragg 

peak. The changes in the Bragg peak position allowed the quantification of creatinine 

concentration with a physiologically relevant limit of 6 μM (Sharma, Jana, 2004). 

Organophosphorus compounds are potent inhibitors of nervous system function and are used 

worldwide in agriculture, creating a need for a rapid, low-cost method of their detection (Dziri et 

al. , 1998, Radic et al. , 1993). The organophosphorus compound parathion was detected as low 

as fM using CCA sensors containing acetylcholinesterase (AChE) (Walker and Asher, 2005). 

AChE bound organophosphorus compounds irreversibly and created anionic phosphonyl species, 

which increased the Donnan osmotic pressure in the hydrogel matrix that red shifted the Bragg 

peak. Since the binding was irreversible, the AChE-CCAs acted as dosimeters for parathion.  

Elevated concentrations of ammonia in the blood damages the central nervous system and 

inhibits the generation postsynaptic potentials (Hazell and Butterworth, 1999, Lockwood, 2004). 

Routine screening of ammonia blood concentration of at-risk patients is a clinical need that could 

prevent neurological damage. (Bachmann, 2003). Hyperammonemia is commonly associated 

with cirrhosis and chronic alcoholism, in which the liver cannot adequately clear out ammonia 

(Shimamoto et al. , 1999). An ammonia sensor that quantified the concentration of ammonia in 

human blood serum in the physiological range of 50-350 μM was synthesized by binding 3-

aminophenol to the poly(hydroxyethyl acrylate) CCA backbone (Kimble et al. , 2006). Ammonia 

reacted with hypochlorite and the pendant aminophenol in the Berthelot reaction to create 

benzoquinone chlorimine, which reacted with another pendant aminophenol to form a crosslink. 

The crosslinking of the hydrogel caused the matrix to shrink, and blue-shifted the diffracted 

light. 

Recently, a CCA sensor has been developed to detect enzyme activity by tethering a target 

peptide (LRRASLG) to the hydrogel matrix as a substrate for protein kinase A (PKA) 

(MacConaghy et al. , 2015). The peptide became phosphorylated by PKA, resulting in additional 

negative charges in the hydrogel and the creation of a Donnan potential which changed the 

hydrogel volume and subsequently shifted the Bragg diffraction. By eliminating extraneous 

charges in the hydrogel through functionalization with azide-alkyne click chemistry, the 

hydrogels were able to detect phosphorylation in 30 min and had a sensitivity limit of 0.1 U/μL 

PKA in 2 h (MacConaghy, Chadly, 2015). 

The diagnosis and treatment of diabetes also require rapid sensors that can be produced at 

low-cost. Phenyl boronic acid derivatives form reversible covalent bonds with carbohydrates 

through cis-diol binding (Hisamitsu et al. , 1997, Zhang et al. , 2013a). Boronic acid (pKa = 8.8) 

is in uncharged and trigonal configuration below pH 7.0; however, at pH values greater than its 

pKa value, boronic acid is in tetrahedral coordination form (Springsteen and Wang, 2002). The 

tetrahedral form can bind to cis-diol groups of carbohydrates, resulting in boronate ionization. 

This binding mechanism has been utilized in CCAs for sensing carbohydrates (Asher et al. , 

2003). A CCA was synthesized from copolymerization of acrylamide and boronic acid 

derivatives. The sensor produced a Bragg peak shift of 60 nm as the concentration of glucose 
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was increased to 10 mM (pH 8.5, 2 mM tris-HCl buffer). In another study, CCA embedded in 

phenyl boronic acid derivative functionalized polyacrylamide-poly(ethylene glycol), and a 

polyacrylamide-15-crown-5 matrixes were utilized to quantify the concentration of glucose in 

solutions (Alexeev et al. , 2003). The complexation of phenyl boronic acids and the cis-diol 

groups of glucose molecules increased the hydrogel crosslinking, and blue-shifted the Bragg 

peak. For example, a boronic acid-polyacrylamide- poly(ethylene glycol) CCA sensor produced 

a blue Bragg peak shift by 60 nm for 8 mM glucose (pH 8.5, 2 mM tris-HCl buffer) while the 

sensor produced a 100 nm shift at pH 9.5 (Figure 2g) (Alexeev, Sharma, 2003). Table 2 shows 

the dynamic ranges and sensitivities of various CCAs. 

 

Table 2. Crystalline colloidal array sensors 

 

Molecularly imprinted polymers (MIPs), which have been used in chemical and biological 

sensors as selective recognition elements with a high affinity for the target molecule, can also be 

used to create defects in CCAs. MIPs contain specific recognition sites that are complementary 

in size, shape and functional groups to the template molecules and involve an interaction 

mechanism based on molecular recognition (Wulff, 1995). For example, CCA sensors 

incorporating MIPs were used for the detection of bisphenol A (BPA), a suspected endocrine-

disruptor which adversely affects human growth and development (Guo, Zhou, 2012). 

Molecularly imprinted monodisperse PMMA nanoparticles were prepared with suspension 

polymerization, resulting in numerous nanocavities distributed in the PMMA spheres that 

provided specific recognition sites for BPA. By measuring the change in diffraction intensity 

corresponding to BPA concentrations, the sensor can detect between 1 ng/mL and 1 g/mL (Guo, 

Zhou, 2012). Similarly, the combination of molecular imprinting and CCA materials has also 

been used for the detection of diethylstilbestrol (DES), which has clinical utility in testing risk 

breast cancers and clear cell adenocarcinoma of the cervix (Palmer et al. , 2006, Sai, Ning, 

2013). The diffraction intensity of the CCA decreased in 7 min upon increasing the DES 

concentration from 2 ng/mL to 8.2 mg/mL with no obvious changes in diffraction for DES 

analogues (Sai, Ning, 2013). Furthermore, molecularly imprinted CCAs have been used to 

measure the concentration of p-nitrophenol (Xue, Meng, 2014b). As the concentration of p-

nitrophenol was increased to 30 mM, the Bragg peak of the CCA shifted 55 nm to longer 

wavelengths, showing a detection limit of 1 mM. The color change was visible to the eye (Figure 

2g). 

CCAs that can maintain their color independent of the observation angle have been 

synthesized (Yeo et al. , 2015). Monodisperse double emulsions encapsulating CCAs were 

prepared using a microfluidic device. Inducing crystallization of highly-charged polystyrene 

particles in the core of double emulsions through osmotic annealing allowed creating CCAs with 

improved angle tolerance. This approach also enabled tuning the shape and crystallinity of the 

CCA supraparticles. These supraparticles were subsequently were fixed in an elastomeric matrix. 

However, this approach produced broadband Bragg diffraction at low intensity, limiting the 

practicality for sensing applications. Recently, CCAs having uniform, Janus, multicomponent, or 

core-shell inner structures have been reported (Zhao et al. , 2014, Zhao et al. , 2010b). The 

spherical symmetry of such “bead-shaped” CCAs enables their PBGs to be independent of the 

rotation angle under illumination of the surface at a fixed incident angle. Hydrogel DNA-

responsive photonic beads were used for a label-free DNA detection (Zhao et al. , 2010c). The 
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hybridization of target DNA and the crosslinked single-stranded DNA in the hydrogel grid 

causes hydrogel shrinking, leading to a blue shift in the Bragg diffraction peak. 

Defects can be introduced to CCA as recognition sites by controlling the population and 

arrangement of nanoparticles through the creation of gaps, points, lines, planes, and grain 

boundaries (Arsenault et al. , 2006). Such defects allow engineered functionality for integrated 

optics applications. For example, creation of a single row of missing spheres to a CCA can 

provide a path for light guiding through the periodic lattice. Additionally, a bend can be created 

in the waveguide on the order of the wavelength of the light and a bend radius on the order of 

one particle diameter. This approach enables the creation of miniaturized circuit patterns that 

may find application in integrated optics and sensors. Defects in CCA can be introduced by 

photolithography, direct writing in confocal microscopy, and high-energy beam surface writing. 

Air core waveguides were constructed in silicon inverse opals by inserting linear air cavities in 

the interior of a lattice of silica spheres (Vekris et al. , 2005). This process involved 

photolithographically printing a pattern of photoresist lines on the colloidal surface, and then 

depositing silica spheres to cover the photoresist layer. Next, this layer was removed to create a 

pattern of linear air cavities in the CCA. Advanced projection lithography can achieve a 

resolution on the order of 250 nm. Direct writing by laser confocal microscopy involved 

infiltrating a CCA with a monomer solution, and then scanning the focal volume through the 

interior of the CCA to locally polymerize the monomer solution. The unpolymerized monomer 

solution is then removed from the system to leave a polymeric defect in the CCA (Lee et al. , 

2002, Pruzinsky and Braun, 2005). Linear polymeric patterns with a linewidth on the order of 2 

μm at a depth of 0.5 μm can be achieved. High-energy beam writing of linear patterns on the 

surfaces of CCAs have also been demonstrated (Tétreault et al. , 2006). This process involved 

direct writing of laser or e-beam across the surface of the CCA to selectively remove material or 

induce changes. For example, ion lasers were used to change the local recrystallization of 

amorphous Si to nanocrystalline Si. This process reduced the refractive index from 4.0 to 3.6. 

Furthermore, irradiation of PMMA spheres with e-beam cleaved bonds to cause solubility in an 

organic solvent (Ferrand et al. , 2003). Hence, the exposed materials can be removed in a 

development step to create structural changes. 

Planar defects in CCAs can serve as optical dopants that decrease the intensity of Bragg peak 

at specific wavelengths associated with pseudogap frequencies. The wavelength of defect states 

within the pseudogap depends on the thickness of the dielectric slab, and its refractive index 

(Tétreault et al. , 2004). A 2D defect consisting of a monolayer of spheres sandwiched between 

two opal layers with different diameters were created by the Langmuir-Blodgett technique (Egen 

et al. , 2003, Massé et al. , 2006, Zhao et al. , 2003). Such defects have also been introduced by 

spin coating spheres or nanocrsytalline aggregates in CCAs (Pozas et al. , 2006). Furthermore, 

chemical vapor deposition (Palacios‐Lidón et al. , 2004, Tétreault, Mihi, 2004) and 

polyelectrolyte multilayers (Fleischhaker et al. , 2005a) have also been used to introduce these 

defects. Polyelectrolyte multilayers can be incorporated in photonic crystals by layer-by-layer 

deposition or transferring the layer over the surface of the photonic structure by using a PDMS 

stamp, followed by growing a send layer of CCA on top of the embedded structural defect. These 

polyelectrolyte defect layers were functionalized with photochemically active azobenzene 

polyelectrolytes and redox-active polyferrocenylsilane (PFS) metallopolyelectrolytes. The 

polyelectrolyte incorporating azobenzene can be actively modulated based on photochemical 

trans-cis isomerization and thermal backisomerization of the azo group (Fleischhaker, Arsenault, 

2005a). The defect transmission state of the redox active polyferrocenylsilane was modulated by 
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oxidizing and reducing the ferrocene units (Fleischhaker et al. , 2005b). The polyelectrolyte 

layers allow the incorporation of dyes, quantum dots, colloids, and biopolymers such as proteins 

and DNA (Schönhoff, 2003). For example, CCAs were designed with planar polyelectrolyte 

defects that incorporated DNA and polypeptides (Fleischhaker et al. , 2006). These sensors were 

used to monitor DNA conformational changes and the enantioselective intercalation of 

daunorubicin. 

 

2.3. Inverse Opal Sensors 

Inverse opals are constructed by templating monodisperse spheres, typically consisting of silica, 

polystyrene, PMMA, or block co-polymers (Aguirre et al. , 2010). Close-packed arrays from 

suspended particles can be obtained through centrifugation, sedimentation, vertical deposition, 

and physical confinement in hydrogels (Furumi et al. , 2010, Xia et al. , 2000). These close-

packed arrays serve as a template that allows infiltration, and the spheres are removed from the 

medium by pyrolysis and etching (Figure 3). Inverse opals can be constructed in hydrogel 

matrixes that are functionalized with covalently linked chelating agents or ligands that can 

specifically bind to target analytes. Such interactions change the lattice spacing and the refractive 

index of the interstitial spaces and the hydrogel medium. The physical changes in the hydrogel 

matrix can be read through the diffracted or transmitted light. 

  

Figure 3. Inverse opal sensors. (a) The fabrication of inverse opal structure by the self-assembly 

of a colloidal crystal template, (b) infiltration by a monomer mixture, polymerization, and (c) the 

removal of colloidal crystal template, scale bars = 500 nm. Reprinted with permission from (Kim 

et al. , 2013), Copyright, Macmillan Publishers Ltd. (d) PNIPAAm-co-carboxylic acid 

thermosensors. Reprinted with permission from (Ueno et al. , 2007), Copyright, Wiley-VCH 

Verlag GmbH&Co. KGaA, Weinheim. (e) PNIPAAm-co-4-vinylbenzo-18-crown-6 K
+
 ion 

sensor. Reprinted with permission from (Saito et al. , 2003), Copyright, The Royal Society of 

Chemistry. 

 

Inverse opals can be functionalized to be sensitive to external stimuli. Poly(N-

isopropylacrylamide) (PNIPAAm) is a widely studied thermosensitive hydrogel that becomes 

hydrophobic at 32 °C by undergoing a phase transition from swollen to dehydrated state (Schild, 

1992). An inverse opal PNIPAAm film was used as an optical filter by varying the temperature, 

which shifted the position of the Bragg peak and/or its intensity (Ueno, Matsubara, 2007). The 

thermosensor was prepared by copolymerizing N-isopropylacrylamide (NIPAAm), and 

methacrylic acid (MAAc). As the temperature was increased from 16 to 31 °C, the Bragg peak of 

the poly(NIPAAm-co-MAAc) matrix decreased from 660 to 340 nm (Figure 3d). The shift to 

shorter wavelengths originated from the shrinkage of the hydrogel matrix, which decreased the 

FCC lattice spacing. Another inverse opal temperature- and cation-sensitive sensor was 

templated from a silica sphere array by copolymerizing NIPAAm, N,N-methylenebisacrylamide, 

and 4-vinylbenzo-18-crown-6 (Saito, Takeoka, 2003). At 36 °C, K
+
 ions (40 mM) shifted the 

Bragg peak by 200 nm to longer wavelengths (Figure 3e). However, the sensor was also 

sensitive to changes in the ionic strength of the cations. The color range of inverse opal 

hydrogels can be tuned by controlling the concentration of the crosslinker and the size of the 

templating spheres (Takeoka and Watanabe, 2003, Takeoka et al. , 2003). Humidity-sensitive 

inverse opal hydrogels were also developed using the hydrophilicity of polyacrylamide (Barry 

and Wiltzius, 2006). When the relative humidity was changed from 20 to 80%, the Bragg peak 
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red shifted from 538 to 580 nm. Recently, humidity-sensitive silk-fibroin inverse opals were 

developed (Diao et al. , 2013). The humidity-induced cyclic contraction of silk fibroin enabled 

continuous modulation of the diffracted color. pH-sensitive inverse opal hydrogels were also 

synthesized from 2-hydroxyethyl methacrylate and acrylic acid (Lee and Braun, 2003). The 

range of Bragg peak shift can be controlled by changing the concentration of the acrylic acid and 

the crosslinker. The wavelength red shifted by 300 nm as the pH was increased from 4 to 7, 

showing a sensitivity of 0.01 pH units.  

Inverse opals can be utilized as sensors for many clinically-relevant analytes. Glucose-

sensitive inverse opals were synthesized in pHEMA matrixes containing 3-APB (Lee et al. , 

2004b). Phenylboronic acid reversibly binds to 1,2-cis diols such as glucose, which increases the 

degree of ionization. This swells the hydrogel matrix by an influx of water and ions, and 

subsequently red shifts the Bragg peak. Inverse opals were optimized to respond to 

concentrations within the clinical range (<7.0-15.0 mM) of glucose in blood to indicate 

hyperglycemia (Nakayama et al. , 2003). The diffracted light shifted from green to yellow/orange 

to red as the concentration of glucose was changed from 5.0 to 10.0 to 15.0 mM. In another 

study, inverse opals were used to sense alcohols (Pan et al. , 2012). A single crystalline inverse 

opal hydrogel was fabricated by the polystyrene opal templating method in polyacrylamide. Its 

diffraction spectra changed from about 640 to 450 nm when the alcohol (methanol, ethanol, or n-

propanol) concentration was increased. This sensor was also responsive to the variation in the 

concentration of polyethylene glycol. Inverse opals have also been used to detect ammonia (Liu 

et al. , 2012). TiO2 inverse opals were fabricated by infiltration with polyaniline. The sensor 

changed its color from red to green reversibly in response to ammonia. This change was 

observed by eye, which may have clinical utility for monitoring ammonia vapor, such as from 

breath (Shimamoto, Hirata, 1999). Furthermore, dimethyl aminopropyl methacrylamide was 

incorporated in inverse opals as a functional monomer to sense CO2 (Hong et al. , 2013). After 

exposure to CO2, the tertiary amine groups in this monomer were protonated and formed ion 

pairs with CO2. This swelled the hydrogel matrix and red shifted the diffracted light. Non-

invasive CO2 sensors could have important implications for monitoring of respiratory physiology 

and pathologies (Folke et al. , 2003). Table 3 shows the inverse opal sensors and their detection 

capabilities. 

 

Table 3. Inverse opal sensors and their detection capabilities 

 

2D inverse opal hydrogels are promising candidates for sensing, and they have a number of 

advantages over traditional 3D inverse opal hydrogels (Li and Lotsch, 2012, Xue, Meng, 2014a). 

Their advantages include (i) faster and simpler formation of the 2D array template through self-

assembly, (ii) a more stable ordering of the 2D array template, which makes it easier to introduce 

the pre-polymer solution into the template, and (iii) the optical characterization that can be 

achieved by analyzing Debye diffraction ring (Tikhonov et al. , 2012). 

 

2.4. Porous Silicon Sensors 

Photonic biosensors have been fabricated from porous silicon (DeLouise, Fauchet, 2005). A 

single crystal silicon wafer was electrochemically etched using hydrofluoric acid. The diameter 

(20-150 nm) and morphology of pores in n-type silicon were controlled by changing the etch 

parameters such as doping level, current density, and electrolytes. The resulting structures acted 

as Bragg gratings that can be tuned from visible to near-infrared regions of spectrum. Hydrogel-
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supported membranes were fabricated by either laminating the structure with a crosslinked 

hydrogel or pouring a monomer solution over the pores prior to crosslinking. Functionalizing the 

internal surface of the pores by bio-receptors and hydrogels allowed changing the position of the 

Bragg peak, which was correlated with concentration values of a target analyte. For example, 

polyacrylamide was functionalized with amine groups and incorporated into the porous silicon. 

Changes in the effective refractive index of disulfide crosslinked hydrogel in porous silicon were 

monitored upon exposure to tris(2-carboxyethyl) phosphine (TCEP). After submerging the 

photonic silicon in TCEP (50 mM) for 15 min and drying for 5 min, the reflectance peak shifted 

approximately 100 nm to shorter wavelengths (Bonanno and DeLouise, 2010). The color 

changes were visible to the eye. For detecting biomarkers in whole blood, amine-terminated 

porous silicon surface was functionalized with sulfosuccinimidyl-6-(biotinamido)-6-hexanamido 

hexanoate, and the sensor response was tested with biotinylated anti-rabbit IgG from goat 

(Bonanno and DeLouise, 2007). An increase in the concentration of IgG from 1 to 10 mg ml
-1

 

produced ~3.3 nm wavelength shift. This approach offered intrinsic size-exclusion filtering of 

erythrocytes, which enhanced signal differentiation. 

 

2.5. Block Copolymer Sensors 
Block copolymers consist of two or more chemically distinct macromolecules that are joined 

together by covalent or non-covalent bonds (Kim, Park, 2010, Lynd et al. , 2008). A diblock 

copolymer consists of distinct polymers. The blocks can be linear chains of identical monomers 

or branched sequences of monomers. When the blocks are physically incompatible, different 

macromolecules are thermodynamically driven to self-assemble to reduce the contact between 

two immiscible regions (Fredrickson and Bates, 1996). Immiscible block copolymers undergo a 

microphase segregation to form nanostructures with dimensions ranging from 5 to 100 nm, and 

the control over this process allows tuning of their physical properties and morphology 

(Bockstaller et al. , 2005, Klinger et al. , 2013). Thermodynamically incompatible homopolymers 

phase separate to minimize the enthalpy of the system. However, in block copolymers, entropic 

forces from the covalent linkages counterbalance the thermodynamic forces driving separation 

(Bates and Fredrickson, 2008). In contrast to the macrophase separation, the mobility of the 

copolymer is restricted locally due to the covalent bonding in block copolymers. Unfavorable 

monomer contacts and the tendency to minimize chain stretching locally segregate layers 

(Bockstaller, Mickiewicz, 2005). The phase behavior depends on three main factors: degree of 

polymerization (N), Flory-Huggins interaction parameter (χ), and the volume fraction of the 

block (Fredrickson and Bates, 1996). Using block copolymers, 2D/3D morphologies with 

different periodic lattice configurations can be achieved to create optical gratings (Bates and 

Fredrickson, 1990, Matsen and Bates, 1996). The polymer type, molecular weight, interaction 

parameter and processing conditions such as the degree of polymerization determines the 

morphology, such as lamellae, gyroid, cylindrical, or spherical (Figure 4a) (Hadziioannou and 

Skoulios, 1982). 

 

Figure 4. Block copolymer sensors. (a) Possible self-assembled architectures due to microphase 

separation. Reprinted with permission from (Bucknall and Anderson, 2003), Copyright, 

American Association for the Advancement of Science. (b) SEM micrograph of a polystyrene-b-

quaternized poly(2-vinyl pyridine) block copolymer film deposited on a Si wafer. Reprinted with 

permission from (Kang et al. , 2007), Copyright, Macmillan Publishers Ltd. (c) The principle of 

operation. The block-copolymer stack has alternating rigid layers (red) and dynamic 
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polyelectrolyte layers (blue). (d) The degree of crosslinking allows tuning the diffracted light in 

aqueous solutions. Red regions have lower crosslinking density as compared to blue regions. 

Reprinted with permission from (Kang, Walish, 2007), Copyright, Macmillan Publishers Ltd. (e) 

Color change of the block copolymer films quaternized with direct exchange of counteranions. 

Reprinted with permission from (Lim et al. , 2012), Copyright, American Chemical Society. 

 

Diblock copolymers have been used to construct Bragg gratings by solvent casting 

polystyrene-block-poly(ethylene/propylene) (PS-b-PE/P) (400 kg/mol) with a polymer 

dispersion index of 1.04 (Bockstaller et al. , 2001). This process created a periodic lamella 

structure with a spacing of 200 nm. When illuminated with a white light source, the Bragg 

grating diffracted light at 545 nm. Optical gratings can also be prepared by mixing diblock 

copolymers with its constituent homopolymers to swell the lamellar microdomains (Urbas et al. , 

1999). The diblock copolymer/homopolymer allows tailorable lattice spacings, and the use of 

low molecular weight components. However, the production of optical gratings by self-assembly 

is limited due to incorrect size of domains needed for the optical ranges of interest, attainment of 

long-range order, and field of view, or cause low diffraction efficiency (Edrington et al. , 2001). 

The intrinsic dielectric contrast between the phases in block copolymer-based diffraction 

gratings is low, which limits the bandgap achievable by block copolymer-based Bragg gratings 

(Fink et al. , 1999). For example, the refractive index contrast between two phases of 

polystyrene-block-polyisoprene is 1.1. To improve the dielectric contrast, the microdomains of 

diblock copolymers can be doped with nanoparticles (Bockstaller, Kolb, 2001, Chiu et al. , 2005, 

Chiu et al. , 2007). The surface of nanoparticles can be functionalized to induce affinity to one of 

the phases of the block copolymer. For instance, PS-coated Au
0
 nanoparticles with thiol-

terminated ligands can be synthesized by the reduction of HAuCl4·3H2O in THF or two phase 

liquid system (Brust et al. , 1994, Yee et al. , 1999). Another challenge with diblock copolymers 

is that their absorption masks the diffraction within the visible spectrum. Hence, the practical 

short wavelength limit of diblock copolymers is ~300 nm since such systems have strong 

absorption in the UV region (Urbas et al. , 2002). Furthermore, self-assembled lamellae contain 

imperfections due to local phase separations and inconsistent orientation of the localized lamellar 

geometries in symmetric diblock copolymers (Edrington, Urbas, 2001). 

The diblock copolymer gratings can be functionalized to render chemical-sensing capability. 

Polystyrene-b-quaternized poly(2-vinyl pyridine) (PS-b-QP2VP) lamellar films can be 

synthesized in a few steps. First, PS-b-QP2VP (5% wt, Mn = 190 kg mol
-1

-b-190 kg mol
-1

) in 

propylene glycol monomethyl ether acetate is spin-casted over a substrate, followed by annealing 

the matrix in chloroform vapor (50 °C, 24 h) to form in-plane oriented lamellar films (Kang, 

Walish, 2007). Subsequently, P2VP blocks were quaternized and crosslinked using a mixture of 

bromoethane and 1,4-dibromobutane (DBB) in hexane at (50 °C for 24 h). This process 

converted pyridine to pyridinium in the system. The resulting structure contained a microdomain 

periodicity of 100 nm with a matrix thickness of 1-3 μm (Figure 4b). When submerged into an 

aqueous solution, the polymer matrix expanded to 15-20 μm.  

Block copolymers can consist of polystyrene-block-polyacrylic acid (PS-b-PAA), which 

consists of a hydrophobic PS block and pH sensitive hydrophilic PAA block. When illuminated 

with a white light source, block copolymer sensors operate through the modulation of their 

lattice spacing and, and hence shifting the Bragg peak to shorter or longer wavelengths (Figure 

4c). The degree of swelling of the hydrogel matrix can be controlled by the density of 

crosslinking. Highly-crosslinked regions of the block copolymer were blue and less-crosslinked 
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regions were red in water (Figure 4d). This block copolymer matrix was used to non-specifically 

measure ionic strength in water (Kang, Walish, 2007). When different anions are introduced to 

the block copolymer matrix, the lamellar structure expanded or shrank depending on the 

hydration characteristics of each counterion (Lim, Lee, 2012). Another block copolymer matrix 

quaternized for 36 h with direct exchange of counteranions (10 mM) produced a color change in 

the visible spectrum (Figure 4e). In another study, temperature-sensitive block copolymers 

composed of high molecular weight poly(styrene-b-isoprene) (PS-b-PI) were anionically 

synthesized with styrene and isoprene monomers in cyclohexane and benzene (Yoon et al. , 

2008). The resulting block copolymer matrix was sensitive to temperature changes (30-140 °C). 

Additionally, phenyl boronic acid derivatives were incorporated in block copolymers to sense 

carbohydrates (Ayyub et al. , 2013). PS-b-P2VP functionalized with 2-

(bromomethyl)phenylboronic acid quantified the concentrations of fructose up to 50 mM with a 

detection limit of 0.5 mM. Although the self-assembly of block copolymers is a feasible method 

in creating multilayer Bragg gratings, it is limited by the requirement of synthesizing high 

molecular weight block copolymers for sensing applications. 

The external shape and internal morphology of block copolymers (e.g., poly(styrene-block-4-

vinylpyridine) (PS-b-P4VP)) have been controlled by positioning of Au nanoparticle surfactants 

to create convex particles (Ku et al. , 2014). The assembly of the Au NPs was localized at the 

interface between P4VP domain at the particles surface and the surrounding water. This created a 

balanced interfacial interaction between PS and P4VP domains of the block copolymer to form 

convex lenses. 

 

2.6. Bragg Stack Sensors 

Bragg stacks consist of alternating layers of high- and low-refractive index materials that upon 

interacting with incident light produce a strong coloration due to PBG. When the grating is 

illuminated with a white light source, the light is diffracted from each layer interface, creating 

narrow-band peaks. Such structures can be rationally designed by changing the film architecture, 

materials, and the periodicity to obtain desired optical characteristics. For example, the thickness 

can be varied by spin coating from 10 to 500 nm by controlling spinning speed, withdrawal rate, 

and the concentration of the deposited solution. Furthermore, the refractive index can be changed 

by modifying the composition of the deposited materials and the porosity. In bottom-up 

approaches, high- and low refractive index materials such as TiO2 (n= ~2.85) and SiO2 (n= 

~1.44) can be used to construct multilayers (5-10). Many inorganic materials can be used to 

construct the Bragg stacks: metal oxides, zeolites, clays, metal-organic frameworks, metals, and 

semiconductors (Bonifacio et al. , 2009, Hinterholzinger et al. , 2012, Lotsch et al. , 2009). 

Hydrogel-based Bragg stacks were constructed from a combination of TiO2 nanoparticles, 

and hydrophobic and hydrophilic polymers such poly methyl methacrylate-co-2-hydroxyethyl 

methacrylate-co-ethylene glycol dimethacrylate (PMMA-co-pHEMA-co-PEGDMA) for 

application in sensing (Wang et al. , 2011). Figure 5a,b illustrates the principle of operation of 

Bragg stack sensors by increasing the thickness or changing the effective refractive index of the 

porous layer to induce a shift in the Bragg diffraction. In the presence of solvents, the Bragg 

peak shifted to longer wavelengths. The initial wavelength of Bragg stack sensors were tuned by 

changing the hydrogel-TiO2 ratio during spin coating (Figure 5c-e). The Bragg stack sensors 

were tested in the presence of various organic solvents, where each solvent produced a different 

wavelength shift in the diffracted light (Figure 5f). For example, the shifts for ethanol and 

DMSO were 60 and 420 nm, respectively. Another study reported a Bragg stack temperature 
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sensor fabricated by coating high- and low- refractive index photo-crosslinkable copolymers: 

poly(paramethyl styrene) and PNIPAAm (Chiappelli and Hayward, 2012). As the temperature 

was increased from 20 to 50 °C in water, the Bragg peak blue shifted by 300 nm, producing a 

visible color change (Figure 5g). The fabrication of Bragg stacks with spin coating has a number 

of limitations. Spin coating is a multistep process consisting of drying and annealing steps 

between subsequent layers (von Freymann, Kitaev, 2013). Additionally, Bragg stacks are angle 

dependent; hence, their color changes are based on the position of observation (Bonifacio, 

Lotsch, 2009). The fabrication of organic-inorganic Bragg stacks is limited due to the instability 

of the polymer in the presence of inorganic sol (colloidal suspension). For example, the inorganic 

material solution containing TiO2 sol is acidic, which distorts the morphological integrity of the 

sublayer (von Freymann, Kitaev, 2013). 

 

Figure 5. Bragg stack sensors. Principle of operation by (a) hydrogel swelling, and (b) Change 

of the effective refractive index. (c-e) SEM images of cross-sections of spincoated Bragg stacks 

consisting of TiO2 and PMMA-co-pHEMA-co-PEGDMA with layer thicknesses of (c) 70 and 9 

nm, (d) 80 and 20 nm, and (e) 89 and 57 nm. The insets show the diffraction at 2.0 × 2.0 cm. 

Scale bars = 100 nm. (f) The colorimetric response of spincoated Bragg stacks to organic 

solvents. (c-f) Reprinted with permission from (Wang, Zhang, 2011), Copyright, The Royal 

Society of Chemistry. (g) Colorimetric readouts of a poly(para-methyl styrene)-PNIPAAm 

Bragg stack temperature sensor in water. Reprinted with permission from (Chiappelli and 

Hayward, 2012), Copyright, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. (h) Layer-by-

layer assembly of Bragg stack sensors through coating of polyanions and polycations on a 

negatively-charged substrate. 

 

Layer-by-layer assembly is another approach to create Bragg gratings. It was first introduced 

for creating structured thin films in biotechnology applications (Decher et al. , 1992). The 

surfaces of many materials including glasses, silicons, and metals carry net negative charges in 

aqueous solutions due to surface oxidation and hydrolysis. When these planar or curved surfaces 

are immersed in positively charged polyelectrolyte solutions and rinsed with water, the net 

charge on the surface becomes positive since polyelectrolytes are absorbed and deposited over 

the negatively charged surface. Positively charged polyelectrolytes include 

poly(diallyldimethylammonium chloride) (PDDA), poly(allylamine hydrochloride) (PAH), and 

polyethyleneimine (PEI). Negatively charged polyelectrolyte solutions can be deposited over the 

positively charged polyelectrolyte layer, and these steps can be repeated until reaching a desired 

thickness (Figure 5h). The water rinsing step is required to remove unabsorbed polyelectrolytes 

from the surface. Negative polyelectrolytes include poly(styrene sulfonate) (PSS), poly(vinyl 

sulfate), or poly(acrylic acid) (PAA). This process builds alternating polyelectrolyte bilayers on 

the substrate. Layer-by-layer has an accuracy of 1 nm allowing nanoscale control of the 

thickness of films (Decher, 1997, Decher and Hong, 1991). While these self-assembly techniques 

are typically based on electrostatic interactions, polymer bilayers can also be constructed by 

using hydrogen and covalent bonding (Brynda and Houska, 1996, Sun et al. , 1998), hydrophobic 

interactions (Kotov, 1999, Lojou and Bianco, 2004), charge transfer (Shimazaki et al. , 1997), 

and biological recognition (Anzai et al. , 1999). In addition to polyelectrolytes, charged species 

of layer-by-layer bilayers may include carbon tubes (Jiang et al. , 2005, Mamedov et al. , 2002), 

nanoparticles (Kotov et al. , 1995), nanoplates (Keller et al. , 1994, Kleinfeld and Ferguson, 

1994), organic dyes (Cooper et al. , 1995), porphyrins (Araki et al. , 1996), dendrimers (He et al. 
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, 1999), polyoxometalates (Ingersoll et al. , 1994, Liu et al. , 2003), polysaccharides (Lvov et al. , 

1998, Richert et al. , 2002), polypeptides (Boulmedais et al. , 2003, Müller, 2001), proteins 

(Hong et al. , 1993, Kong et al. , 1994, Lvov et al. , 1995, Lvov et al. , 1994), DNA and nucleic 

acids (Lvov et al. , 1993), and viruses (Yoo et al. , 2006). In sensing applications, poly(acrylic 

acid) (PAA)/poly(allylamine hydrochloride) (PAH) and PAA/poly(sodium 4-styrenesulfonate) 

(SPS) layers reversibly responded to pH and organic solvents (Zhai et al. , 2004). A significant 

limitation of layer-by-layer assembly is time consuming polyelectrolyte deposition, which take 

up to several hours. 

 

3. Plasmonic Hydrogel Sensors 
Localized surface plasmon resonance (LSPR) is an optical phenomenon in noble metal 

nanostructures involving sharp spectral absorption and scattering that allow them to be used as 

sensors. A plasmon refers to the oscillation of the free electrons in a noble metal (Mayer and 

Hafner, 2011). When the surface plasmons are optically excited, light is coupled into propagating 

or standing surface modes (Rochon and Lévesque, 2006). When a surface plasmon occurs 

around a nanoparticle sized on the order of the wavelength of the light, the free electrons produce 

a collective oscillation, which is called LSPR. This enhances the electric fields near 

nanoparticles’ surface, and this effect decreases with distance. The optical extinction of the 

nanoparticle corresponds to a maximum at the plasmon resonant frequency. The extinction peak 

depends on the nanoparticle type and its complex refractive index (Mayer and Hafner, 2011). 

The LSPR can be utilized in hydrogels to sense external stimuli based on the changes in the 

position of the peak wavelength or intensity. Figure 6a-d shows different configurations of 

plasmonic hydrogel sensors in thin films, array brush, core-shell colloids, and surface brush 

formats. Plasmonic nanoparticles can be incorporated in pH-responsive hydrogels. For example, 

gold nanoparticles were coated with pH-sensitive poly(methacrylic acid)-block-poly(N-

isopropylacrylamide) (PMAA-b-PNIPAAm) (Nuopponen and Tenhu, 2007). In aqueous 

solutions, the nanoparticles aggregated as the pH was increased from 5 to 8. However, particle 

aggregation was irreversible. A blue shift in the LSPR was measured with decreasing pH or 

increasing temperature. Plasmonic crystal-based pH sensors were also reported (Mack et al. , 

2007). First, a metallic fold film (50 nm) was coated over a square array consisting of 350 nm 

deep cylindrical impressions with 480 nm diameter. A monomer mixture consisting of 

hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA), acryclic acid 

(AA), and aqueous surfactant (Brij 58) was photopolymerized over the substrate. As the pH in 

the environment was increased, the hydrogel volumetrically expanded and decreased the 

refractive index. This shifted the LSPR peaks to shorter wavelengths. The sensor reversibly 

detected the changes within the pH range of 1.44-7.86, with a precision of 0.1 pH units.  

Another study reported lithographically fabricated gold nanocrescents, which were coated 

with a pH-sensitive pHEMA hydrogel matrix (Jiang et al. , 2009). The LSPR of these 

nanocrescents operated in the near infrared region. As the pH was increased from pH 4.5 to 6.4, 

LSPR peaks shifted to shorter wavelengths, achieving an accuracy of 0.045 pH units. Plasmonic 

sensors based on polymer brushes were also synthesized (Tokareva et al. , 2004). Gold 

nanoparticles attached to poly(2-vinylpyridine) polymer brushes over gold nanoislands allowed 

reversible monitoring of pH changes by transmission spectroscopy. When the pH was changed 

from 5.0 to 2.0, the polymer brushes swelled from 8.1 to 24.0 nm. This volumetric change 

shifted the absorption maximum of the transmission SPR spectrum of the supporting gold 

nanoislands by 50 nm. Furthermore, light-controlled switching was demonstrated for Au 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 
 

nanorods encapsulated in the thermoresponsive PNIPAAm shells (Rodríguez-Fernández et al. , 

2011). Au nanorod cores can be simultaneously used as fast optothermal manipulators 

(switchers) and sensitive optical reporters of the hydrogel state based on the analysis of the 

shifting behavior of the nanorod longitudinal plasmon. 

 

Figure 6. Plasmonic hydrogel sensors. (a) Thin film hydrogel containing plasmonic 

nanoparticles, (b) microhydrogel array brush containing plasmonic particles, (c) 2D/3D assembly 

of core-shell colloids, (d) surface immobilized nanoparticles on the surface of a hydrogel brush, 

showing their microscale and their polymer architectures. (e) An SEM image of a gold 

nanorod/polyacrylamide nanofiber (Ø=340 nm). The inset illustrates a magnified nanofiber 

where a gold nanorod was positioned. (f) Dark-field images of a gold nanorod embedded in a 

polyacrylamide nanofiber (Ø=440 nm, l=4.1 mm) at parallel polarization. The white spots at the 

bended sections show scattered light. (e,f) Reprinted with permission from (Wang et al. , 2012), 

Copyright, American Chemical Society. 

 

Plasmonic hydrogel sensors were also used for measuring concanavalin A (Morokoshi et al. , 

2004). Gold nanoparticles were functionalized with disulfide-carrying polymer with pendent 

glucose residues (poly(2-methacryloyloxyethyl d-glucopyranoside)). The binding of 

concanavalin A to glucose was measured by LSPR sensing, showing a concentration-dependent 

response with a limit of detection of 1.9 nM. Another study reported the synthesis of DNA arrays 

using SPR hydrogel probes (Okumura et al. , 2005). DNA arrays were constructed by a surface 

modification technique for detecting K-ras point mutations, which is associated with the 

development of various malignancies such as lung and colon cancer. A homobifunctional alkane 

dithiol was adsorbed on the surface of a gold film to obtain a thiol surface and modified with 

ethylene glycol moiety, which supressed non-specific adsorption during SPR analyses. 

Steptavidin was immobilized on the modified surface, where biotinylated DNA ligands were 

attached to create DNA arrays. Finally, DNA probes conjugated with carboxylic acid-containing 

acrylamide nanospheres were bound to the target DNA in a sandwich configuration. The use of 

nanospheres produced an SPR signal enhancement and allowed the discrimination of a K-ras 

point mutation in the SPR difference image. Furthermore, polymer particles were doped with 

dyes to amplify the SPR signal originating from antibody-antigen interactions (Komatsu et al. , 

2006). Such particles enhance the SPR signal by changing the imaginary part of the refractive 

index. The colorant improved the signal about 100 fold as compared to non-amplified SPR 

signal. Another study utilized dye-doped polymers and SPR allowed sensing Cu
2+

 ions (Ock et 

al. , 2001). The sensor consisted of a poly(vinylchloride)-poly(vinyl acetate)-poly(vinyl 

alcohol)copolymer film doped with squarylium dye and operated based on the changes in the 

refractive index upon interacting with Cu
2+

 ions. The sensor was sensitive to Cu
2+

 ions in buffer 

solutions at concentrations as low as 1 pM. 

Plasmonic particles were coupled with MIPs to measure the concentration of cholesterol 

(Tokareva et al. , 2006). Gold nanoislands with a mean diameter of 14.5 nm were deposited over 

a glass substrate, where the interisland distance was 35 nm. These islands were spin coated over 

a 3 nm polyglycidylmethacrylate (PGMA) layer, which was used to graft carboxyl-terminated 

poly(2-vinylpyridine) (P2VP) over the substrate. Subsequently, gold nanoparticles (Ø=12 nm) 

and cholesterol were absorbed by the P2VP matrix and crosslinked by a quaternization reaction 

involving 1,4-diiodobutane to create the MIP layer. This MIP layer was used to sense 

cholesterol, where a 56 nm shift in the absorption maximum of the gold nanoislands was 
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measured by T-SPR spectroscopy. MIPs were also utilized to detect domoic acid on a gold chip 

via SPR (Lotierzo et al. , 2004). Domoic acid is a marine neurotoxin that causes amnesic 

shellfish poisoning (Lelong et al. , 2012). A gold surface was functionalized with a self-

assembled monolayer of 2-mercaptoethylamine, and 4,4′-azobis(cyanovaleric acid) was linked to 

the surface via carbodiimide chemistry. A 40 nm MIP film consisting of polymerized 2-

(diethylamino) ethyl methacrylate and ethylene glycol dimethacrylate was attached to the 

functionalized surface. The resulting system enabled the use of a competitive binding assay to be 

performed with free domoic acid and its conjugate, while using horseradish peroxidase as a 

reactive label. The sensor allowed the measurement of domoic acid in buffer solutions through 

SPR readouts, achieving a detection limit of 5 ng/mL. Table 4 shows the plasmonic hydrogel 

sensors and their sensitivities. 

Recently, newer platforms have emerged for utilizing SPR as the sensing probe. For 

example, polymer nanofibers consisting of aligned gold nanorods were utilized for sensing 

humidity (Figure 6e) (Wang, Zhang, 2012). A gold nanorod-doped polyacrylamide nanofiber at 

parallel polarization showed red scattered light (Figure 6f). The 540 nm thick nanofiber 

waveguides were illuminated at 785 nm from one end, and the intensity of the light output was 

measured from the other end. The scattering intensity of the waveguide decreased as the RH was 

increased. The sensor had a photon-to-plasmon conversion efficiency of 70% at its longitudinal 

resonance wavelength, and it allowed quantifying relative humidity (10-70 %) within 110 ms 

using 500 pW at 785 nm. 

 

Table 4. Plasmonic sensors and their applications in medical diagnostics 

 

4. Reflection and Refractive Index Modulation-Based Hydrogel Sensors 
Changes in the refractive index can be used as a measurement mechanism in hydrogel matrixes 

that can dynamically respond to a target analyte. For example, hydrogel microlenses were 

utilized as optical sensors due to changes in the refractive index or radius of curvature (Ehrick et 

al. , 2007). The response due to swelling can be quantified by measuring the focusing power of 

the microlens (Figure 7a, b). When a hydrogel lens interacts with a target analyte, the degree of 

de/focusing of the lens can be correlated with the concentration. The microdome patterned 

hydrogels were synthesized by UV or thermally initiated free-radical polymerization over a glass 

substrate. The hydrogel microdome was synthesized from acrylamide copolymerized with 

calmodulin and phenothiazine derivatives. In the presence of the competing ligand 

chlorpromazine, calmodulin displaced phenothiazine, causing decrosslinking and gel swelling. 

This swelling changed the curvature of the microdome and its refractive index, defocusing the 

image. Microlenses were also constructed from hydrogel rings to control the curvature of a 

water-oil interface (Dong et al. , 2006). These rings were created from PNIPAAm and 

functionalized with acrylic acid to create sensitivity for temperature and pH, respectively. The 

microlenses were produced by sandwiching a hydrogel ring between a glass surface and a hole, 

where the water was added, and oil was confined in this space. This produced a system with a 

water-oil interface at the center of the hydrogel ring. The curvature of the interface was 

modulated by volumetrically changing the hydrogel matrix through pH or temperature. 

Another study reported the synthesis of thermosensitive PNIPAAm-co-acrylic acid microgels 

on aminopropyltrimethoxysilane (APTMS) functionalized glass substrates (Serpe et al. , 2004). 

Elecrostatic interactions allowed amine groups on the substrate to bind to the acrylic acid 

functionalized microgels. Upon attachment to the substrate and drying, the microgels deformed 
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isotropically. The microgel curvature was modulated by changing the temperature, pH and 

solvents. The resulting structures were used as dynamically tunable lensing structures through 

the modulation of the size, focal length, and the refractive index (Kim et al. , 2004). Furthermore, 

these microlenses can be tuned with laser light. First, a glass substrate was doped with Au
0
 

nanoparticles (Ø=16 nm), and a cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) 

was deposited on this surface to render it positively charged (Kim et al. , 2005b). PNIPAAm-co-

AAc microgels were added to this system by adding it dropwise over the surface in a spatial 

manner. The resulting lens was excited at frequency-doubled Nd:YAG laser (λ= 532 nm) due to 

the plasmon modes on the Au
0
 nanoparticles. Based on the same principle, microlenses that 

display refractive index changes were designed for protein sensing (Kim et al. , 2005a, Kim et al. 

, 2006, Kim et al. , 2007a, Kim et al. , 2007b). These microlenses consisted of binding- and 

displacement-induced formats. Vitamin biotin was conjugated to acrylic acid within the 

microlens, and the assay was tested in the presence of avidin or anti-biotin (antibody). The 

presence of avidin and anti-biotin increased the surface crosslinking of the microlens, which 

induced a refractive index change. Using an inverted microscope, a single square projection 

transited to double image in projection mode. 

 

Figure 7. Reflection and refractive index based hydrogel sensors. (a) A schematic of a tunable 

hydrogel microlens in (1) the initial state and (2) swollen in the presence of an analyte. (b) Image 

focused through a polyacrylamide microlens in (1) the swollen state and (2, 3) defocused in a 

less swollen state. (4) The microlens array format. Reprinted with permission from (Ehrick, 

Stokes, 2007), Copyright, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. 

 

A layer of functionalized microgels has been sandwiched between two gold films to produce 

an etalon. Upon interacting with an analyte, functionalized microgels produced volumetric 

changes, resulting in visual color changes and shifts in multipeak reflectance spectra. The 

positions of the peaks in the spectra primarily depended on the distance between the gold layers 

mediated by the microgel thickness. Reductant-sensitive PNIPAAm microgels crosslinked with 

N,N'-bis(acryloyl)cystamine have been synthesized and incorporated in an etalon (Li et al. , 

2015b). This device produced an optical response in the presence of dithiothreitol due to 

decrosslinking of the microgel matrix. The reflection peak of the etalon shifted ~45 nm as the 

concentration of dithiothreitol was increased from 0.19 to 1.50 mg/mL. Etalons were also used to 

sense ethanol (Huang and Serpe, 2015). As the concentration of ethanol was increased to 12 vol 

%, the reflectance peak shifted 60 nm to longer wavelengths. In another study, etalons were 

constructed from poly(N-isopropylacrylamide-co-N-(3- aminopropyl) methacrylamide 

hydrochloride) (pNIPAm-co-APMAH) microparticles, which were functionalized to be sensitive 

to negatively charged single stranded DNA (ssDNA) (Islam and Serpe, 2014). In the presence of 

target DNA (80 µM, pH 7.2), the reflectance peak shifted 60 nm to shorter wavelengths. Etalons 

constructed from pyridine-functionalized PNIPAAm have been used for gas sensing (Zhang et 

al. , 2015). As the CO2 was introduced to the etalon, the reflectance peak shifted ~35 nm. A 

challenge in using etalons is that the readouts are broadband, which may limit colorimetric 

measurements by eye. Nevertheless, as compared to the other sensing approaches, etalons are 

easier to fabricate. 

Analytes can also be sensed by a polymer-coated optical fiber tip. Optical fibers have several 

advantages such as remote sensing over long distances, small size and immunity to 

electromagnetic interference as compared to electrochemical sensors. The change in refractive 
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index and swelling can be read out by measuring the reflectance or by an interferometric setup. 

In one embodiment, a pH sensor was created by dip coating a fiber with Kraton (61652), which 

was a styrene-ethylene, butylene-styrene, and a triblock copolymer (Shakhsher et al. , 1994). In 

its non-swollen state the polymer was opaque, but when the pH was decreased from 8.0 to 6.5, 

the amine groups were protonated; hence, the polymer swelled and became transparent. The 

change in refractive index and clarity decreased the intensity of the reflected light by a factor of 

2. To improve the sensitivity to the changes in refractive index, an interference method was used 

(Wei Chang et al. , 2012). The fiber could be bitapered or a core offset could be introduced so 

that part of the core mode leaked into the cladding layer. Both core and cladding modes were 

reflected back from the coated fiber tip and were recombined in the fiber core. The optical path 

length difference between the two modes resulted in an interference pattern. The interference 

was measured by using a tunable laser as a light source and recording the output intensity as a 

function of its wavelength. Refractive index change was proportional to the wavelength shift of 

the interference. In one study, a bitapered optical fiber was coated with polyvinyl alcohol/poly-

acrylic acid hydrogel. A pH sensitivity of 1.58 nm/pH was achieved in the pH range of 2.48–6.47 

(Wong et al. , 2014). 

Swellable polymer spheres dispersed in hydrogels can also be used as sensors. Such 

dispersions are optically opaque because of the mismatch of the refractive index of the spheres 

and the hydrogel, causing light scattering. Upon introduction of an analyte, the polymer particles 

change refractive index, scattering, and turbidity. The polymer microsphere method has 

advantages over surface immobilized polymers since the polymer is free to swell in all directions 

in the hydrogel matrix, eliminating the problems of deformation, cracking and detachment of the 

polymer layer. Furthermore, light transmission can be measured at any wavelength with different 

standard equipment such as a UV/Vis/NIR spectrometer. For example, a pH sensor has been 

made of a dispersion of aminated poly(vinylbenzyl chloride) microspheres (Ø=1 µm) suspended 

in a pHEMA matrix (Rooney and Seitz, 1999). Turbidity was measured when pH was changed 

from pH 4.0 to 10.0. In another study, pH-sensitive polymer particles were synthesized from N-

isopropylacrylamide (NIPA) copolymerized with a crosslinker and pH sensitive functional 

comonomer and embedded in a PVA hydrogel matrix (Lavine et al. , 2012). 

 

5. Tests in Biological and Clinical Samples 

Photonic hydrogel sensors have been tested in blood and urine samples to analyze the 

interference from other analyte species. Holographic sensors containing phenylboronic acid (12 

mol%), and trimethylammonium chloride (12 mol%) have been used to measure the 

concentration of glucose (3-33 mmol L
-1

) in seven human blood plasma samples (Worsley, 

Tourniaire, 2007). Trimethylammonium chloride increased the sensitivity of phenylboronic acid 

to glucose over other saccharides possessing cis-1,2- or -1,3-diols (Horgan, Marshall, 2006). 

Experimental setup allowed varying the concentration of glucose from 0.17 to 0.28 mmol L
-1

 

min
-1

 using glucose stock solution (44 mmol L
-1

). The measurements were calibrated with an 

electrochemical analyzer (2300 STAT Plus). As the concentration of glucose was increased from 

3.8 mmol L
-1

 to 30.9 mmol L
-1

, the Bragg peak shifted from 640 to 571 nm. The reproducibility 

and repeatability of the holographic sensors ranged from 1.9-5.4 and 1.1-4.8, respectively. 

However, this approach required buffering the sample using sodium phosphate to keep pH 

constant at 7.4. Holographic sensors were also tested with urine samples of diabetic patients 

(Yetisen, Montelongo, 2014d). These sensors containing 3-APB (20 mol%) responded to glucose 

concentrations (2-10 mM) by changing their color from green to red. In clinical tests, the sensors 
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were able to measure glucose up to 400 mmol L
-1

 within 3 min with a detection limit of 90 μM. 

A significant challenge with the readouts of phenylboronic acid is that cis-diol binding with 

glucose requires ~1-2 h to reach saturation. To shorten the response time, an algorithm was 

developed to correlate the concentration of glucose with the binding rate, and the readouts were 

achieved in 3 min. However, the interaction of 3-APB with glucose was pH dependent; hence, 

the measurements were conducted under fixed pH conditions. 

Ammonia-sensitive CCAs have been tested with human blood serum (Kimble, Walker, 

2006). This photonic crystal array included covalently attached 3-aminophenol to the 

poly(hydroxyethyl acrylate) matrix, which formed crosslinks through Berthelot mechanism. 

First, ammonia present in a solution reacted with hypochlorite to form a monochloramine, which 

in turn reacted with pendant 3-aminophenols to create a crosslink in the hydrogel matrix. pKa 

values of 3-aminophenol are 4.37 and 9.81 for the amine and hydroxy functional groups, 

respectively. The crosslink formation in the hydrogel shifted the diffracted light to shorter 

wavelengths in proportion to the amount of ammonia present in the solution. The sensors tested 

in diluted human blood serum in borate buffer (pH 9, 50 mmol L
-1

) showed Bragg peak shifts of 

2, 4, 7, and 13 nm in the presence of 30, 75, 150, and 300 µmol L
-1

 ammonia within 1 h, 

respectively. The detection limit of this sensor was 50 µmol L
-1

 (Kimble, Walker, 2006). A 

disadvantage of this sensor was that the samples required highly basic buffers to function. 

Furthermore, CCAs functionalized with 8-hydroxyquinoline have been used to measure Ni
2+

 ions 

in human plasma at neutral pH (Baca et al. , 2008). Polyacrylamide matrix containing CCAs was 

first hydrolyzed at 24 °C for 2 h. 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)-

initiated reaction was used to covalently link 5-amino-8-hydroxyquinoline to the polyacrylamide 

matrix. When human plasma (10 mL) was added to NiCl2 (0.75 mmol L
-1

, 20 mL) in HEPES 

(pH 7.4, 50 mmol L
-1

) buffer and NaCl (150 mmol L
-1

), the Bragg peak of the sensor shifted to 

shorter wavelengths by 12.4 nm. This Ni
2+

 sensor had a sensitivity of 60 µmol L
-1

 (Baca, 

Finegold, 2008). However, blood plasma has a complex composition containing proteins and 

ions that contract the polyacrylamide matrix due to a decrease in Donnan osmotic pressure. 

Porous silicon sensors were tested in opiate spiked human urine samples (n=50) (Bonanno et 

al. , 2010). The porous silicon was functionalized with an opiate-analogue (MG3). This was 

achieved via carbodiimide chemistry by linking MG3 to lysine groups present on a bovine serum 

albumin blocked surface. In oxycodone-free urine samples, monoclonal mouse antimorphine 

antibody (α-M Ab) bound to the opiate-analogue attached to silicon pore surface, which resulted 

in a 6 nm Bragg peak shift to longer wavelengths. Free opiates in urine competed for binding 

sites on the α-M Ab, and this resulted in a corresponding decrease in the wavelength shift. 

Limitations of porous silicon sensors include variation in the pore diameters of silicon, and 

wavelength shifts below 10 nm that are not possible to identify with eye. 

 

6. Future Directions 

Many bottom-up fabrication methods including layer-by-layer assembly, and spin and dip 

coating require the deposition of nanoparticle and polymer bilayers with high accuracy. In these 

approaches, the accuracy of the assembly depends on the sequential coating steps, which are time 

consuming. Faster deposition schemes might be achieved through automation and 3D printing 

(Xing et al. , 2015). For example, robotic coaters have been utilized in the spray layer-by-layer 

assembly of polyelectrolytes and TiO2 and SiO2 multilayers (Nogueira et al. , 2011). Such 

methods can achieve assembly faster than the immersion layer-by-layer assembly. Increasing the 

control of deposition parameters such as temperature, spinning and withdrawal times, the 
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quantity and the concentration of solutions through robotics will allow creating uniform optical 

properties in centimeter-sized substrates. The broader use of ink-jet type material deposition 

systems will enable precise localization of the analyte sensitive species and the production of 

patterned gratings. Such devices may have the ability to convey a message at the moment of 

analyte detection. Furthermore, these approaches can include novel materials such as graphene, 

carbon nanotubes, quantum dots, magnetic nanoparticles, silk, nanofibers, nanocrystals, latex 

particles, and negative refractive index structures (Butt et al. , 2015, Deng et al. , 2014, Kong et 

al. , 2014, Kong et al. , 2015). 

In visually read optical sensors, a significant limitation is the visibility of the photonic 

structures from wide angles. The semi-quantitative readout of photonic hydrogel sensors by eye 

is challenging. For example, in Bragg reflectors, the color of the diffracted light might depend on 

the position of the observer. Furthermore, as the hydrogel swells and shrinks, the angle of the 

diffracted light from the normal to the surface plane changes; this is an inherent property of 

Bragg reflectors. A significant contribution to the area would be the development of 

omnidirectional gratings that can be fabricated with high refractive-index contrast constituent 

layers. The incorporation of diffusers, lenses, reflectors, or other optical devices in photonic 

gratings will improve the angle of view (Zhao et al. , 2015b). Some of these fabrication 

approaches may be inspired from structural color designs in nature (Oh et al. , 2014). However, 

such additional devices will decrease the intensity of the diffracted light in any given direction. 

Hence, the optimization of Bragg stack layers or the concentration of plasmonic nanomaterials in 

the hydrogel matrix will increase the diffraction efficiency of photonic sensors. Additionally, the 

development of algorithms that can estimate the position of the Bragg peak as the hydrogel 

matrix swells or shrinks will be a valuable contribution. Another potential area of development is 

tuning the sensors to operate in the entire visible spectrum; currently, only a few sensors have 

utilized broad colorimetric regions. 

Photonic hydrogel sensors have high sensitivity ranging from pM to mM. However, a 

limiting factor for realizing the full potential of photonic hydrogel sensors is selectivity. Ionic 

strength, pH and temperature significantly affect the performance of these sensors. Shields and 

Sale, 2014However, photonic hydrogels may be multiplexed to improve the dynamic range and 

obtain readouts from different sensors. Moreover, the integration of photonic hydrogel sensors 

with PDMS or paper-based microfluidics may allow multiplexing (Volpatti and Yetisen, 2014, 

Yetisen, 2015g, Yetisen and Volpatti, 2014). Such assays enable the use of low-volumes of 

fluids to carry out sample preparation for high-throughput analyses (Choi and Cunningham, 

2007, Kim et al. , 2014). Additionally, testing the effects of batch-to-batch variability, oxidation, 

material decay, and long-term storage can be significant contributions in creating robust sensors. 

The fabrication techniques that allow constructing sensors from microporous hydrogels are 

required to increase the diffusion rates. For example, fabrication of photonic structures utilizing 

zeolite nanoparticles could be a feasible method to increase the response time of the sensors. 

Furthermore, the development of affinity ligands to control the specificity of targeting by 

antibodies and bioactive macromolecules such as nucleic acids and whole cells will be important 

contributions to the field. Additionally, while the hydrogel sensors that do not selectively bind to 

analytes had fast response times, the sensors with ligands take inherently longer times to bind to 

target analytes and reach equilibrium. This remains a significant issue as compared to other 

sensing mechanisms such as electrochemical sensing. Investigations in binding kinetics of 

chelating agents and ligands, and reversibility will enable the development of photonic hydrogel 

sensors with improved control over selectivity in addition to rapid response time. Studies in 
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shrinking/swelling dynamics, non-specific interactions with hydrogel matrixes, surface energy 

and charge, hydrophilicity/phobicity, surface roughness, and polymer porosity will allow the 

rational design of sensors. Furthermore, the models that can simulate the properties of material 

during swelling and shrinking cycles, change in effective refractive index, plasmonic effects, 

diffraction and absorption spectra of the grating or the nanoparticles/dopants will contribute to 

the theoretical understanding of photonic hydrogel sensors.  

The readout technologies of photonic hydrogel sensors should also evolve. Smartphone 

technologies have recently emerged as a platform to quantify the sensor readouts while offering 

connectivity options (Yetisen et al. , 2014b, Yetisen et al. , 2014c). This platform will also enable 

the real time reporting of the results of IVD testing. For example, readouts of photonic hydrogel 

sensors with tablet computers, smartphones/watches, or other wearable technologies can improve 

the existing user interface. The embedded light sources in these mobile devices may be utilized 

to standardize the illumination of the sensors. Such platforms also provide data processing to 

mitigate the interference from background noise of the sample or ambient light. While these 

readout technologies are required for quantitative analyses, there is also a significant market need 

for equipment free semi-quantitative diagnostics, where photonic hydrogel sensors may offer 

solutions through their colorimetric readouts. Such devices may also include user-friendly fool-

proof text or image reporting capabilities. Additionally, photonic hydrogels are not limited to 

IVD, but also offer possibilities in implantable chips (Choi et al. , 2013) and contact lens sensors 

(Farandos et al. , 2015), where long-term operation, biocompatibility are required for continuous 

quantification of analytes in vivo. 

 

7. Conclusions 

Many top-down and bottom-up approaches including laser writing, self-assembly and layer-by-

layer deposition have been demonstrated to create Bragg diffraction gratings, microlenses, 

etalons and plasmonic structures in hydrogels. These hydrogels have been functionalized to be 

sensitive to a wide range of analytes by creating covalently-bound pendant recognition groups or 

molecularly imprinted sites. Utilizing the nanoscale structures as transducers, functionalized 

hydrogel matrixes have been utilized to quantitatively report on the concentrations of target 

analytes. When these sensors output narrow-band light over broad wavelength ranges in the 

visible spectrum, the readouts were visible to the eye for semi-quantitative analyses. Fully-

quantitative readouts were obtained using spectrophotometers. 

The majority of photonic hydrogel sensors have been created by self-assembly. However, 

most approaches require lengthy synthesis to create Bragg gratings. For example, forming 

monodisperse, highly-charged polystyrene particles through emulsion polymerization require 

lengthy dialysis times. The creation of high-quality CCAs with large areas still require hours to 

days to complete. Furthermore, CCAs suffer from defects since the properties of these highly 

charged particles cannot be controlled precisely. Other self-assembly approaches including layer-

by-layer deposition and spin coating suffer from instability and time-consuming fabrication. For 

instance, formation of organic-inorganic Bragg stacks is limited due to the instability of the 

polymer in the presence of acidic inorganic sol, which distorts the morphological integrity of the 

sublayer. 

Inclusion of charged functional groups during self-assembly and polymerization disrupts the 

lattice spacing in CCAs, block copolymers, and Bragg stacks. Hence, the functionalization of the 

polymer matrix often needs to be performed post-hydrogel formation. This results in nonuniform 

distributions of functional moieties throughout the hydrogel matrix. In inverse opals, the 
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diffraction efficiency is relatively higher as compared to the CCAs, but they also suffer from 

lattice disruption. Furthermore, block copolymers such as PS-b-PAA and PS-b-P2VP are 

fundamentally limited to pH and unspecific solvent sensing. Additionally, self-assembly 

approaches lack flexibility in controlling the dimensions of the sensors. For instance, 

sedimentation and centrifugation do not have precise control over sample thickness. Other 

approaches involving layer-by-layer deposition is limited to thin films. Although many 

applications have been demonstrated utilizing self-assembled sensors, few of them utilized the 

entire visible spectrum to report on the analyte concentrations. Most applications have 

wavelength shifts smaller than 10 nm, not visible to the eye. In particular, due to high crosslinker 

concentration, MIPs suffer from small wavelength shifts. Hence, tuning range of Bragg peak 

shifts requires improvement in polymer synthesis, potentially involving increased porosity and 

hydrophilicity. Broad wavelength shifts and the entire visible spectrum need to be utilized for 

practical colorimetric sensing applications. 

In contrast to self-assembly, top-down techniques such as holographic patterning offers 

reproducibility. In fabricating holographic sensors, charged functional groups can be 

incorporated during polymerization prior to Bragg grating formation. The lattice spacing of 

holographic sensors can be easily tuned using different wavelengths of laser light. A challenge 

associated with holographic sensing is that achieving high diffraction efficiency requires 

multiple processing steps in silver halide chemistry. While high-energy laser patterning of 

holographic sensors can be completed in a few steps, this approach suffers from low diffraction 

efficiency (<10%). Photopolymerization-induced formation of Bragg gratings is a practical 

approach to create Bragg gratings; however, the migration of short polymer chains during high-

intensity recording results in low diffraction efficiency. Nevertheless, holographic patterning 

offers fabrication flexibility that cannot be achieved with bottom-up approaches. 

Hydrogel microlenses provide a simpler fabrication approach as compared to the Bragg 

grating-based hydrogel sensors. This approach does not require complicated fabrication 

approaches, and the output of the assay is the changes in the refractive index or the focus of the 

lens. However, this approach requires significant changes in the refractive index to create a 

resolvable shift in the spectrophotometer fiber. This approach also falls short as a mobile rapid 

diagnostic assay since the measurements require an external photodetector. Fiber optic sensors 

incorporate the hydrogel and a quantitative spectrometry within the same device; and since the 

hydrogel matrix is in direct contact with the fiber, the readouts are more accurate compared to 

other sensing platforms. Furthermore, plasmonics is a flexible approach to create photonic 

hydrogel sensors, but the ability to tune the colors of plasmonic assays and the capability to 

obtain color changes in the entire visible spectrum is not possible, limiting the use of this assay 

to yes/no readouts or spectrophotometric analysis. 

Existing IVD technologies are primarily based on molecular dyes, electrochemistry, and gold 

nanoparticle-based lateral-flow assays. These assays cannot colorimetrically display quantitative 

results, and they cannot be used for repeat analyses. Additionally, the incorporation of many 

recognition agents using a single platform is challenging for existing assays. This market gap 

represents an opportunity to develop quantitative photonic hydrogel sensors that can operate in 

the entire visible spectrum. Photonic hydrogels should offer improvement in sensitivity, 

selectivity, response time, and user interface to create a competitive advantage. Potential 

applications may focus on reusable, wearable, and equipment-free colorimetric IVD devices. 

Another niche area is localized sensing and mapping the concentrations of analytes throughout a 

smeared sample. The value of photonic hydrogel sensors can only be realized if they offer a 
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strategic advance over existing products, are compatible with existing manufacturing lines, and 

show efficacy at point-of-care settings. 
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Table 1. The quantification capabilities of holographic sensors in medical diagnostics 

Stimulus Recognitio

n Group 

Dynami

c Range 

Sensi

tivity 

Ref. 

Trypsin (μg ml
-1

) Gelatin 

degradation 

< 20 0.04 (Millington, Mayes, 1996) 

Water content in 

solvents (ppm) 

Matrix 

interaction 

< 20,000 120 (Blyth, Millington, 1996) 

Alcohol (%) Matrix 

interaction 

< 100 0.3 (Mayes et al. , 1999) 

K
+
 ions (mM) 18-crown-6 < 30 1 (Mayes, Blyth, 2002) 

pH Carboxylic 

acid 

2-9 0.000

6 

(Marshall, Blyth, 2003, Tsangarides, 

Yetisen, 2014, Yetisen, Butt, 2014a) 

Glucose (mM) Phenylboro

nic acid 

< 375 0.09 (Domschke et al. , 2006, Horgan et 

al. , 2006, Kabilan, Blyth, 2004, 

Kabilan, Marshall, 2005, Kraiskii et 

al. , 2010, Lee et al. , 2004a, Worsley 

et al. , 2007, Worsley et al. , 2008, 

Yang et al. , 2006, Yang et al. , 2008, 

Yetisen et al. , 2014d) 

Ionic strength 

(mM) 

Charged 

sulphonate 

and 

quaternary 

ammonium 

< 500 0.08 (Marshall et al. , 2004b) 

Penicillin G (mM) Penicillinas

e 

< 1-25 0.05 (Marshall et al. , 2004a) 

Urea (mM) Urease < 50 0.15 (Marshall, Young, 2004a) 

Ca
2+

 (μM) iminodiaceti

c acid, 

nitrilotriacet

ic acid 

<70 2.2 (Bhatta et al. , 2007, Gonzalez et al. 

, 2005) 

Lactate (mM) Phenylboro

nic acid 

< 12 0.1 (Sartain et al. , 2006, 2008) 

Calcium 

dipicolinate (mM) 

Acid-

soluble 

spore 

proteins 

> 50 40 (Bhatta et al. , 2008) 

Humidity (%, RH) Matrix 

interaction 

10-80 1 (Naydenova et al. , 2011, Naydenova, 

Jallapuram, 2008, 2009) 

Edrophonium (μM) Acetylcholi

nesterase 

and 

carboxylic 

acid 

< 300 0.4 (Tan and Lowe, 2009) 

Alkanes, alkenes, 

alkynes (% v/v) 

Matrix 

interaction 

< 100 0.5 (Martinez-Hurtado, Davidson, 2010, 

Martinez-Hurtado et al. , 2011) 
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Co
3+

 (mmol l
-1

) Ionogens < 10 0.1 (Kraiskii, Postnikov, 2010) 

Organic solvents 

(%, v/v) 

Matrix 

interaction 

< 10 0.1 (Yetisen, Qasim, 2014g) 

Testosterone (μM) Molecular 

imprinting 

< 10 1.0 (Fuchs et al. , 2014, Fuchs et al. , 

2013) 

Cu
2+

, Fe
2+

 (1 M) Porphyrins < 1.0 0.1 (Yetisen, Qasim, 2014g) 

Ammonia (NH3) 

(%, v/v) 

Nafion 0.19-

12.5 

2 (Hurtado and Lowe, 2014) 

Pb
2+

 8-

Hydroxyqui

noline 

0.1-10.0 

mM 

11.4 

μM 

(Yetisen, Montelongo, 2015a) 
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Table 2. Crystalline colloidal array sensors 

Stimulus Recognition 

Group 

Dynamic 

Range 

Sensitivity Ref. 

Pb
2+

 ions 18-crown-6 <7.5 mM 0.5 µmol/L (Asher, Peteu, 2002) 

Urea Urease 0.05 mM – 

0.5 mM 

N/A (Zeng et al. , 2002) 

Glucose Phenylboronic 

acid 

< 30 mM 50 μM (Asher, Alexeev, 

2003, Zhang, Losego, 

2013a) 

Creatinine Creatinine 

deiminase 

<1 mM 0.01 mM (Sharma, Jana, 2004) 

Temperature Poly(N-

isopropylacrylami

de) 

25-40 N/A (Lyon et al. , 2004) 

Parathion Acetylcholinestera

se 

<42.6 pM 4.26 fM (Walker and Asher, 

2005) 

Ammonia Berthelot reaction 50-300 μM 50 μM (Kimble, Walker, 

2006) 

Ethanol N/A < 100 % (v/v) N/A (Chen et al. , 2011) 

Hg
2+

 ions Urease-urea 

hydrolysis 

< 20 ppb 1 ppb (Arunbabu et al. , 

2011) 

Bisphenol A Imprinted cavity < 1 μg/mL 1 ng/mL (Guo et al. , 2012) 

pH N/A 2.8-9.5 units 0.05 units (Jiang et al. , 2012) 

Cu
2+

, Ni
2+

, 

Zn
2+

 ions 

8-

hydroxyquinoline 

<1.6 μM 0.08 (Jiang, Zhu, 2012) 

Cd
2+

 ions Thiourea <10 mM 0.01 mM (Lin and Yu, 2012) 

Avidin Biotin 1 mg/mL 580 nm/(mg 

mL
-1

) 

(Zhang et al. , 2013b) 

Diethylstilbe

strol 

Imprinted cavity 2 ng mL
-1

 - 8 

μg mL
-1

 

N/A (Sai, Ning, 2013) 

Protein 

kinase A 

Peptide 

LRRASLG 

10 U/μL 0.1 U/μL (MacConaghy, 

Chadly, 2015) 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

50 
 

Table 3. Inverse opal sensors and their detection capabilities 

Stimulus Recognitio

n Group 

Dynamic 

Range 

Sensitivity Ref. 

pH Carboxylic 

acid 

2-7 0.01 (Lee and Braun, 2003, Xue 

et al. , 2014a) 

Glucose Phenylboro

nic acid 

<100 mM 0.l mM (Lee, Pruzinsky, 2004b, 

Nakayama, Takeoka, 2003) 

Relative Humidity Matrix 

interaction 

20-80 % 1-10 % (Barry and Wiltzius, 2006, 

Diao, Liu, 2013) 

Temperature Matrix 

interaction 

16-31
 o
C 2 

o
C (Ueno, Matsubara, 2007) 

Bisphenol A Molecular 

imprinting 

10
-8

-1 µM 10
-9

 µM (Griffete et al. , 2012) 

Cyanide Trifluoroace

tyl 

<1 mM 10
-4

 mM (Li et al. , 2012) 

3-

pyridinecarboxami

de 

Molecular 

imprinting 

<10 wt % 0.5 wt % (Yuan et al. , 2012) 

PEG in 2-propanol Matrix 

interaction 

0-90 

wt % 

10 wt % (Pan, Ma, 2012) 

Ethanol, methanol, 

n-propanol 

Matrix 

interaction 

0-90 

vol % 

10 vol % (Pan, Ma, 2012) 

Ammonia Polyaniline 1-4 (min) 30 nm/min (Liu, Gao, 2012) 

Glucose Glucose 

oxidase 

1-12 mM 0.5 mM (Jin et al. , 2012) 

Cholesterol Molecular 

imprinting 

1 nM - 10 

μM 

1 nM (Zeng et al. , 2012) 

Cu
2+

 ions 4-

vinylpyridin

e 

N/A 50 mM (Hong et al. , 2012) 

CO2 Amino 

groups 

0-4.9 

vol% 

1 vol% (Hong, Chen, 2013) 

Acetate Thiourea 10 mM 1 mM (Kado et al. , 2013) 

Ammonia Matrix 

interaction 

< 100 vol 

% 

N/A (Zhong et al. , 2013) 

Refractive Index Gold 

nanoparticle

s 

1.33-1.40 166 nm/RI unit (Cai et al. , 2013) 

Organic solvents Matrix 

interaction 

100 vol % N/A (Cui et al. , 2014) 

Hg
2+

 ions Carboxylic 

acid 

10-1000 

μM 

10 nM (Zhang et al. , 2014) 

Avidin Biotin 75-10000 

nM 

0.01 nm/nM (Couturier et al. , 2015) 
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Table 4. Plasmonic sensors and their applications in medical diagnostics 

Stimulus Recognition 

Group 

Dynamic 

Range 

Sensitivity Ref. 

pH Carboxylic 

acid 

3-12 units 12.5-19.5 nm/pH (Mishra and Gupta, 

2013, Singh and 

Gupta, 2012) 

Glucose Phenylboronic 

acid 

< 50 mM 50 μM (Mesch et al. , 2015) 

Melamine Gold 

nanoparticles 

 

1 μg/mL 1 μM (Manikas et al. , 2014) 

Concanavalin 

A 

Molecular 

imprinting 

1 µM 0.5° Resonance 

angle shift/min 

(Kuriu et al. , 2014) 

Protein 

(FKBP12) 

Carboxylated 

dextran 

<10 nM 0.5 nM (Li et al. , 2015a) 

Trinitrotoluene Molecular 

imprinting 

83-250 μM 50 μM (Cennamo et al. , 

2013) 

3-

Pyridinecarbox

amide 

Molecular 

imprinting 

0-10 mg/ml 1.483 nm/(mg/ml) (Verma and Gupta, 

2013) 

Bisphenol A Molecular 

imprinting 

< 0.5 

mg/dL 

0.05 mg/dL (Taguchi et al. , 2012) 

4-mercapto-

benzoic acid 

Matrix 

interaction 

10-10
4
 nM 65 pM (Ouyang et al. , 2015) 

2,2-dipyridyl Matrix 

interaction 

10-10
4
 nM 6.4 nM (Ouyang, Zhu, 2015) 

Water content 

in ethanol 

Matrix 

interaction 

< 10 vol % 0.5 vol % (Mishra and Gupta, 

2014) 
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Fig. 1 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

54 
 

Fig. 2
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Highlights 

 Explains the operation principles of photonic hydrogel sensors 

 Discusses holographic sensors, crystalline colloidal arrays, porous silicons, inverse opals, 

block copolymers, Bragg stacks, plasmonic composites, and reflection and refractive 

index modulated optical sensors 

 Provides an overview of self-assembly and nano/microfabrication techniques 

 Demonstrates examples for point-of-care diagnostic applications 

 Shows perceived limitations in sensing and provides guidelines for future work 


