57 research outputs found

    Gauging the impact of glacioeustasy on a mid-latitude early Silurian basin margin, mid Wales, UK

    Get PDF
    The early Silurian (Llandovery) Gondwanan South Polar ice sheet experienced episodes of ice retreat and re-advance. Marine base level curves constructed for the interval are widely assumed to provide a record of the associated glacioeustasy. In revealing a series of progradational sequences (progrades) bounded by flooding surfaces, recent work on the Type Llandovery succession in mid Wales (UK) has provided an opportunity to test this hypothesis. The grouping of these progrades into three composite sequences underpins the construction of both low order (small amplitude, high frequency) and high order (large amplitude, low frequency) base level movement curves. Revised biostratigraphical datasets for the type succession permit the accurate dating of base level events. The composite sequences record progradational acmes in the acinaces, lower convolutus and upper sedgwickii-halli graptolite biozones. A series of transgressions that postdate the Hirnantian glacial maximum culminated in an upper persculptus Biozone high-stand. Maximum flooding events also occurred during the revolutus and lower sedgwickii biozones, and the base of the early Telychian guerichi Biozone also marked the onset of a pronounced deepening. A review of 62 published datasets, including global and other regional base level curves, records of glacial activity, isotope data, patterns of facies and faunal flux and putative climate models, permits an evaluation of the origins of these local base level events. The concept of a Eustasy Index is introduced and shows that the impacts of global sea level movements can only be demonstrated within narrow ‘eustatic windows’ coincident with times of ice sheet collapse. At other times, the geometry of Llandovery area progrades reflects their accumulation across a faulted basin margin where, during periods of slow ice sheet advance, epeirogenic processes outstripped sea level movements as the dominant forcing factors. Increased levels of Telychian subsidence at first enhanced and then overwhelmed the influence of glacioeustasy as part of the region's response to the north European Scandian deformation

    Upper Ordovician hardgrounds – from localized surfaces to global biogeochemical events

    Get PDF
    Upper Ordovician hardgrounds display a spectrum of complexity reflecting a range of local to global-scale processes. Hardgrounds are cemented seafloor surfaces typically marked by the presence of encrusting taxa and borings. Many hardgrounds show evidence for successive episodes of colonization by hard substrate specialists and are associated with localized evidence of seafloor erosion such as overhangs and reworked concretions. They commonly show trace amounts of pyrite and dolomite cements indicating an association with sulfate reduction. The most widespread hardgrounds are highly complex and unravelling their history provides insights into global biogeochemical events. The Curdsville and Kirkfield hardgrounds in the Appalachian Basin (Kentucky and Ontario) represent relatively simple end members of the hardground spectrum. They covered 10s to 100s km2 and formed relatively quickly during the early Katian. They display both planar to subplanar and hummocky to topographically complex surfaces (cm-scale) and contain highly diverse encrusting echinoderm faunas. Study of these surfaces yields important insights into the evolutionary history of encrusting communities. By contrast, the slightly younger hardground at the top of the Galena Group (Ka1) is a surface that is present throughout most of the Midcontinent Basin (>7.5 à 105km2). It is an example of a highly complex surface that was repeatedly modified by erosion and mineralization. Near the eastern margin of the basin in Indiana, the capping Galena hardground is pinnacled with cavity-filling sharpstone clasts, phosphate grains and bored crusts, iron ooids, and pyritic impregnated surfaces. It is onlapped by graptolitic shales of the Kope Formation (Fm) (Ka1) indicating an unconformity of approximately 1 m.y. To the west, in Illinois, the Kope Fm is erosionally truncated and the hardground is directly overlain by graptolitic shales of the Waynesville Fm (Ka3), where the unconformity expands to nearly 4 m.y. Toward Iowa, the hardground is onlapped by meters of phosphorite. Taken together, these observations reveal that the capping Galena Group hardground reflects a complicated history of repeated subaerial exposure, karsting, and marine flooding by a dysoxic to anoxic water mass with fluctuating redox conditions, similar to the age equivalent hardground at the base of the Fjäcka Shale in the Baltic Basin. Thus, hardground studies provide important insights for resolving the temporal continuity of the Upper Ordovician rock record and unravelling processes that controlled carbonate precipitation and dissolution and the evolution of sea floor communities. Some simple hardgrounds may have formed through random exhumation of cemented sediments on the sea floor through the effects of storm scour. However, their clustering into certain portions of the Upper Ordovician suggests that processes that affected sea water chemistry may also be involved. The most complex surfaces reflect major environmental perturbations with large amplitude sea level oscillations and redox changes that in some cases generated rare-earth enriched phosphorites

    The nature of Ordovician limestone-marl alternations in the Oslo-Asker District (Norway):witnesses of primary glacio-eustasy or diagenetic rhythms?

    Get PDF
    Ordovician limestone-marl alternations in the Oslo-Asker District have been interpreted as signaling glacio-eustatic lowstands, which would support a prolonged “Early Palaeozoic Icehouse”. However, these rhythmites could alternatively reflect differential diagenesis, without sedimentary trigger. Here, we test both hypotheses through one Darriwilian and three Katian sections. Our methodology consists of a bed-by-bed analysis of palynological (chitinozoan) and geochemical (XRF) data, to evaluate whether the limestone/marl couplets reflect an original cyclic signal. The results reveal similar palynomorph assemblages in limestones and marls. Exceptions, which could be interpreted as reflecting palaeoclimatological fluctuations, exist at the species level: Ancyrochitina bornholmensis seems to be more abundant in the marl samples from the lower Frognerkilen Formation on Nakkholmen Island. However, these rare cases where chitinozoans differ between limestone/marl facies are deemed insufficient for the identification of original cyclicity. The geochemical data show a near-perfect correlation between insoluble elements in the limestone and the marls, which indicates a similar composition of the potential precursor sediment, also in the Frognerkilen Formation. This is consistent with the palynological data. Although an original cyclic pattern could still be recorded by other, uninvestigated parameters, our palaeontological and geochemical data combined do not support the presence of such a signal

    Integrated stratigraphical study of the Rhuddanian-Aeronian (Llandovery, Silurian) boundary succession in the Rheidol Gorge, Wales:A proposed Global Stratotype Section and Point for the base of the Aeronian Stage

    Get PDF
    The Rheidol Gorge section, approximately 17 km east of Aberystwyth, mid Wales, exposes a ca. 20 m-thick succession of Llandovery (Silurian) strata from the upper Rhuddanian Pernerograptus revolutus Biozone through the lower Aeronian Demirastrites triangulatus Biozone and basal Neodiplograptus magnus Biozone. The section records deposition under a range of bottom-water oxygenation states. The Rhuddanian-Aeronian boundary is located 0.8 m above an abrupt lithological change from predominantly organic-poor, bioturbated `oxic' mudrocks to an interval of black, richly graptolitic `anoxic' shales. The graptolite fauna through the boundary interval, including the local lowest occurrence of D. triangulatus, allows precise correlation with other parts of the world. Graptolite assemblages indicative of separate divisions in the underlying revolutus Biozone and of the lower and upper parts of the triangulatus Biozone are also present. Chitinozoans are relatively well preserved in the section and indicate the Spinachitina maennili Biozone throughout the boundary interval, as is widely the case. The results of carbon isotope analyses from organic matter indistinctly show the weak interval of positive shift in d13C org values through the Rhuddanian-Aeronian boundary interval, as observed globally, though local or regional processes appear largely to overprint the global signal. Overall, the excellent biostratigraphical record, well-documented local and regional stratigraphical context, historical significance, as well as easy access and assured longterm preservation, mean that the Rheidol Gorge section can be proposed as a strong candidate for a new Global Stratotype Section and Point for the base of the Aeronian Stage.. Silurian, Llandovery, Rhuddanian, Aeronian, Global Stratotype Section and Point, Graptolites, Chitinozoa, Carbon Isotope

    A modern assessment of Ordovician chitinozoans from the Shelve and Caradoc areas, Shropshire, and their significance for correlation

    Get PDF
    New chitinozoan data are presented from the classical section along the Onny River in the type Caradoc area, and from the deeper-water sections in the Shelve area, including the former British candidate GSSP for the base of the Upper Ordovician Series. The rich and well-preserved chitinozoan fauna of the Onny River has been a standard for 40 years, but new data revise some of the identifications. The assemblages are now attributed to biozones that are more readily applicable for international cor relation. The main part of the section can be inter preted as belonging to the originally Baltoscandian Spinachitina cervicornis Biozone, although this is uncertain in the lower part. Within this biozone, the Fungochitina actonica Subzone has been defined. The Onny Formation at the top of the section is equated with the Acanthochitina latebrosa–Ancyrochitina onniensis Biozone; contrary to earlier reports, Acanthochitina barbata is absent. The Lower Wood Brook and Spy Wood Brook section from the Shelve Inlier yielded a great number of moderately to well-preserved chitinozoans, but a low-diversity assemblage. Their ranges have been neatly positioned against the well-known graptolite stratigraphy in the area. A local Eisenackitina rhenana Biozone? has been recognized, allowing us to suggest some international cor relations

    The late Katian Elkhorn event: precursor to the Late Ordovician mass extinction

    Get PDF
    The late Katian Elkhorn event is a biogeochemical perturbation preceding the Late Ordovician mass extinction (LOME) with an exceptional record in the United States (U.S.). Results of our recent studies in this interval allow revised temporal ordering to strata across multiple basins providing insights into the magnitude of environmental disturbance and associated processes and feedbacks. The record of the Elkhorn event spans portions of the Appalachian and Midcontinent basins in the eastern U.S. and the Williston Basin and Cordilleran margin in the west. Our work focuses heavily on the Midcontinent Basin in particular, as it shares many characteristics of size, tectonic setting, and lithofacies with the Baltic Basin, providing the potential for resolving global signatures of the event. In its type-area, the Cincinnatian Series ends with the Elkhorn event. The succession is marked by shallowing from subtidal to marginal marine facies, capped by a karstic sequence boundary. Our new conodont data demonstrate that an overlying white to pink crinoidal grainstone package, previously assigned to the basal Silurian âwhiteâ Brassfield Formation near the Ohio-Indiana state line, is in fact Upper Ordovician. Further, δ13Ccarb values in this unit are elevated, in line with later phases of the Elkhorn event (2â° more positive than reported Rhuddanian values). These findings support a correlation of the grainstone interval with the Fernvale Formation of central Tennessee. To the east, much of the northern Appalachian Basin was overfilled with widespread marginal marine to terrestrial red beds by the onset of the Elkhorn event, while the Midcontinent Basin to the west remained relatively sediment starved. In the southern Midcontinent, the mid-Elkhorn event sequence boundary was onlapped by ironstone deposition (lower Fernvale Formation). The ironstones are overlain by sparry and hematitic grainstones with localized bioherms. In Arkansas, where the Fernvale is thickest (>30 m), the sparry phase gives way upward to manganese carbonates and bioherms. Across the region, the Fernvale is, in turn, cut by a sequence boundary, suggesting a yet higher Katian sequence, and is perforated by paleokarst pockets that are filled and overlain by upper Katian (Ka4) sediments. This sequence boundary is onlapped by black shales and the thickest (>10 m) phosphorite of the Ordovician at the end of the Elkhorn event. Previous studies have suggested age equivalence of the Elkhorn and Paroveja δ13Ccarb excursions in Laurentia and Baltica. Despite the attraction of aligning the latest Richmondian and Pirgu regional stages, our data sets demonstrate that this is a miscorrelation. Critical to this revision are new integrated biostratigraphic and chemostratigraphic data sets in a transect from the margin of the Appalachian Basin into the Midcontinent Basin. The new data reveal that the Elkhorn Shale and Fernvale Formation are overlain by the Brainard and laterally equivalent Sylvan, and Mannie shales. These shale successions contain graptolites of the complanatusand pacificus zones. Thus, the Elkhorn event occurred in the latest manitoulinensis Zone, suggesting correlation with the Baltic Moe δ13Ccarb excursion. Our extensive new data sets provide regional chronostratigraphic correlation of strata deposited during the Elkhorn event. When temporally ordered, these records provide evidence for high amplitude sea level oscillations, major redox fluctuations, and reef pulses that demonstrate the waxing and waning of continental ice sheets on Gondwana and the spread of oceanic anoxia only a few million years before the LOME. These findings further call into question traditional models of rapid glaciation during a long-lived greenhouse state as the sole driver of the LOME and emphasize the need for new integrated Upper Ordovician research initiatives to better characterize Katian events

    Upper Ordovician chronostratigraphic correlation between the Appalachian and Midcontinent basins

    Get PDF
    Study of a subsurface core (named F688) from northern Indiana provides integrated data sets linking Katian chronostratigraphic records of the Appalachian and Midcontinent basins. The F688 core shows a variety of shallow- and deep-water facies containing numerous, well-preserved and zonally significant fossil species and diagnostic chemostratigraphic patterns. The succession belonging to the Cincinnatian Regional Stage in the F688 core is 210 m thick. Detailed benchtop examination of the succession revealed several phosphatic intervals, rich brachiopod faunas, multiple graptolitic horizons, and at least two tephras. Elemental analysis was conducted at 60 cm spacing quantifying lithofacies composition. Based on these results, the succession was assigned to six previously defined lithostratigraphic units (Kope, Waynesville, Liberty, Whitewater, Elkhorn, and Fort Atkinson formations). This lithostratigraphic succession shares components with both the Appalachian and Midcontinent basins, suggesting deposition near their shared margin. Twenty samples yielded abundant, well-preserved, low-diversity conodont assemblages with long-ranging taxa that clearly demarcate the position of the OrdovicianâSilurian boundary at the top of the succession in the core. More than fifty palynologic samples, targeting graptolite-bearing intervals, were processed for chitinozoans and produced important new insights. The Kope Formation contains the chitinozoan species Belonechitina kjellstromi, Hercochitina downiei, and Clathrochitina sp. nov., co-occurring with a graptolite assemblage suggestive of the Geniculograptus pygmaeus Zone. Samples from the overlying Waynesville Formation produced graptolites indicative of the upper G. pygmaeus to Paraorthograptus manitoulinensis zones co-occurring with the long-ranging chitinozoan species Belonechitina micracantha and Plectochitina spongiosa as well as several new species of the genera Tanuchitina and Hercochitina. Higher in the core, the Liberty, Whitewater, Elkhorn, and Fort Atkinson formations yielded chitinozoan species characteristic of the upper Katian biozones of Anticosti Island and Nevada, such as Tanuchitina anticostiensis, Hercochitina longi, and Eisenackitina ripae. Results of δ13Ccarb analysis reveal partial preservation of the Kope, Waynesville, and Elkhorn excursions. A tephra in the rising limb of the Waynesville Excursion yielded needle-shaped clear zircons that will provide a high-precision U-Pb age. The Fort Atkinson Formation is overlain by the Brassfield Formation containing Silurian conodonts and δ13Ccarb values suggesting an Aeronian age. Chronostratigraphic data from our study of the F688 core resolves longstanding uncertainty about correlations between strata of Katian Age in the Appalachian and Midcontinent basins. Integration of core F688 with our other regional chronostratigraphic data in the Midcontinent Basin demonstrates that the Fort Atkinson Formation of the Indiana and Illinois subsurface is age equivalent to the Fernvale Formation of Tennessee, Arkansas, and Oklahoma. Across this area, the Fernvale is overlain by graptolitic shales of the uppermost P. manitoulinensis to basal Dicellograptus complanatus graptolite zones. By contrast, the type Fort Atkinson Formation of Iowa is interpreted to occur completely within the younger D. complanatus Zone. These regional correlations taken as a whole suggest that the uppermost Katian (all of Ka4) and all but the uppermost Hirnantian are missing throughout much of the Appalachian Basin. By contrast, the Midcontinent Basin contains a much more complete upper Katian and Hirnantian succession. Our comprehensive approach is correcting temporal miscorrelation and providing robust chronostratigraphic context for study of biogeochemical events, which will further enable us to disentangle proxy data and identify the processes that drove the Katian diversity peak and culminated in the Late Ordovician mass extinction

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore