10 research outputs found

    Targeting the renin-angiotensin-aldosterone system in fibrosis

    No full text
    Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tis-sues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor beta (TGF beta) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGF beta sig-naling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well. (c) 2020 Elsevier B.V. All rights reserved.12 month embargo; published online 16 May 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Gradual hypertension induction in middle‐aged Cyp1a1‐Ren2 transgenic rats produces significant impairments in spatial learning

    Get PDF
    Abstract Hypertension is a major health concern in the developed world, and its prevalence increases with advancing age. The impact of hypertension on the function of the renal and cardiovascular systems is well studied; however, its influence on the brain regions important for cognition has garnered less attention. We utilized the Cyp1a1‐Ren2 xenobiotic‐inducible transgenic rat model to mimic both the age of onset and rate of induction of hypertension observed in humans. Male, 15‐month‐old transgenic rats were fed 0.15% indole‐3‐carbinol (I3C) chow to slowly induce renin‐dependent hypertension over a 6‐week period. Systolic blood pressure significantly increased, eventually reaching 200 mmHg by the end of the study period. In contrast, transgenic rats fed a control diet without I3C did not show significant changes in blood pressure (145 mmHg at the end of study). Hypertension was associated with cardiac, aortic, and renal hypertrophy as well as increased collagen deposition in the left ventricle and kidney of the I3C‐treated rats. Additionally, rats with hypertension showed reduced savings from prior spatial memory training when tested on the hippocampus‐dependent Morris swim task. Motor and sensory functions were found to be unaffected by induction of hypertension. Taken together, these data indicate a profound effect of hypertension not only on the cardiovascular‐renal axis but also on brain systems critically important for learning and memory. Future use of this model and approach may empower a more accurate investigation of the influence of aging on the systems responsible for cardiovascular, renal, and neurological health

    Role of angiotensin II type 2 receptor during regression of cardiac hypertrophy in spontaneously hypertensive rats

    No full text
    We previously reported that the AT1 receptor antagonist valsartan and the angiotensin converting enzyme (ACE) inhibitor enalapril decrease DNA synthesis and stimulate apoptosis in interstitial fibroblasts and epicardial mesothelial cells during regression of ventricular hypertrophy in spontaneously hypertensive rats (SHR). To examine the role of the AT2 receptor in this model, we studied hearts from SHR treated with valsartan or enalapril either alone or combined with the AT2 antagonist PD123319 for 1 or 2 weeks. Apoptosis was evaluated by quantification of DNA fragmentation or by TUNEL labeling. At 1 week, valsartan significantly increased ventricular DNA fragmentation, increased apoptosis in epicardial mesothelial cells, and decreased DNA synthesis. At 2 weeks, ventricular DNA content and cardiomyocyte cross-sectional area were significantly reduced. These valsartan-induced changes were attenuated by PD123319 co-administration. However, valsartan-induced increases in apoptosis of left ventricular interstitial non-cardiomyocytes was unaffected by the AT2 blocker. Enalapril-induced changes were similar to those observed with valsartan but were not affected by co-treatment with PD123319. These results demonstrate that AT1 and AT2 receptors act in a coordinated yet cell-specific manner to regulate cell growth and apoptosis in the left ventricle of SHR during AT1 receptor blockade but not ACE inhibition

    Targeting the renin-angiotensin-aldosterone system in fibrosis

    No full text
    Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tis-sues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor beta (TGF beta) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGF beta sig-naling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well. (c) 2020 Elsevier B.V. All rights reserved.12 month embargo; published online 16 May 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Melanin: The organizing molecule

    No full text
    corecore