3,934 research outputs found

    Local Gating of Information Processing through the Thalamus

    Get PDF
    AbstractInhibitory sculpting of afferent signals in the thalamus is exerted by two types of neurons using γ-amino butyric acid (GABA) as neurotransmitter. Of them, local-circuit neurons exert their functions via two outputs: axons and presynaptic dendrites. In this issue of Neuron, Govindaiah and Cox reveal that synaptic activation of metabotropic glutamate receptors selectively increases the output of presynaptic dendrites of local interneurons in rat visual thalamus, without affecting the axonal output

    Instability of synchronized motion in nonlocally coupled neural oscillators

    Full text link
    We study nonlocally coupled Hodgkin-Huxley equations with excitatory and inhibitory synaptic coupling. We investigate the linear stability of the synchronized solution, and find numerically various nonuniform oscillatory states such as chimera states, wavy states, clustering states, and spatiotemporal chaos as a result of the instability.Comment: 8 pages, 9 figure

    Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators

    Get PDF
    Thalamic circuits are able to generate state-dependent oscillations of different frequencies and degrees of synchronization. However, only little is known how synchronous oscillations, like spindle oscillations in the thalamus, are organized in the intact brain. Experimental findings suggest that the simultaneous occurrence of spindle oscillations over widespread territories of the thalamus is due to the corticothalamic projections, as the synchrony is lost in the decorticated thalamus. Here we study the influence of corticothalamic projections on the synchrony in a thalamic network, and uncover the underlying control mechanism, leading to a control method which is applicable in wide range of stochastic driven excitable units.Comment: 4 pages with 4 figures (Color online on p.3-4) include

    Self-Sustaining Oscillations in Complex Networks of Excitable Elements

    Full text link
    Random networks of symmetrically coupled, excitable elements can self-organize into coherently oscillating states if the networks contain loops (indeed loops are abundant in random networks) and if the initial conditions are sufficiently random. In the oscillating state, signals propagate in a single direction and one or a few network loops are selected as driving loops in which the excitation circulates periodically. We analyze the mechanism, describe the oscillating states, identify the pacemaker loops and explain key features of their distribution. This mechanism may play a role in epileptic seizures.Comment: 5 pages, 4 figures included, submitted to Phys. Rev. Let

    Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input

    Get PDF
    In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from the network's background activity. This leads to ongoing, mostly subthreshold membrane dynamics that depends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics. Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, I show that (i) mere noise inputs can drive the membrane potential into sustained, quasiperiodic oscillations (noise-driven oscillations), in the absence of a stimulus-derived, intraneural, or network pacemaker; (ii) adding hyperpolarizing to depolarizing synaptic input can increase neural activity (hyperpolarization-induced activity), in the absence of hyperpolarization-activated currents

    Signal integration enhances the dynamic range in neuronal systems

    Get PDF
    The dynamic range measures the capacity of a system to discriminate the intensity of an external stimulus. Such an ability is fundamental for living beings to survive: to leverage resources and to avoid danger. Consequently, the larger is the dynamic range, the greater is the probability of survival. We investigate how the integration of different input signals affects the dynamic range, and in general the collective behavior of a network of excitable units. By means of numerical simulations and a mean-field approach, we explore the nonequilibrium phase transition in the presence of integration. We show that the firing rate in random and scale-free networks undergoes a discontinuous phase transition depending on both the integration time and the density of integrator units. Moreover, in the presence of external stimuli, we find that a system of excitable integrator units operating in a bistable regime largely enhances its dynamic range.Comment: 5 pages, 4 figure

    Effects of degree distribution in mutual synchronization of neural networks

    Full text link
    We study the effects of the degree distribution in mutual synchronization of two-layer neural networks. We carry out three coupling strategies: large-large coupling, random coupling, and small-small coupling. By computer simulations and analytical methods, we find that couplings between nodes with large degree play an important role in the synchronization. For large-large coupling, less couplings are needed for inducing synchronization for both random and scale-free networks. For random coupling, cutting couplings between nodes with large degree is very efficient for preventing neural systems from synchronization, especially when subnetworks are scale-free.Comment: 5 pages, 4 figure

    Thalamic reticular nucleus induces fast and local modulation of arousal state

    Get PDF
    During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state.National Institutes of Health (U.S.) (TR01 GM104948)Canadian Institutes of Health Research (Fellowship)Harvard University. Society of Fellows (Fellowship
    • …
    corecore