12 research outputs found

    Baker's conjecture for functions with real zeros

    Get PDF
    Baker's conjecture states that a transcendental entire functions of order less than 1/2 has no unbounded Fatou components. It is known that, for such functions, there are no unbounded periodic Fatou components and so it remains to show that they can also have no unbounded wandering domains. Here we introduce completely new techniques to show that the conjecture holds in the case that the transcendental entire function is real with only real zeros, and we prove the much stronger result that such a function has no orbits consisting of unbounded wandering domains whenever the order is less than 1. This raises the question as to whether such wandering domains can exist for any transcendental entire function with order less than 1. Key ingredients of our proofs are new results in classical complex analysis with wider applications. These new results concern: the winding properties of the images of certain curves proved using extremal length arguments, growth estimates for entire functions, and the distribution of the zeros of entire functions of order less than 1

    Amniotic fluid embolism incidence, risk factors and outcomes: a review and recommendations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amniotic fluid embolism (AFE) is a rare but severe complication of pregnancy. A recent systematic review highlighted apparent differences in the incidence, with studies estimating the incidence of AFE to be more than three times higher in North America than Europe. The aim of this study was to examine population-based regional or national data from five high-resource countries in order to investigate incidence, risk factors and outcomes of AFE and to investigate whether any variation identified could be ascribed to methodological differences between the studies.</p> <p>Methods</p> <p>We reviewed available data sources on the incidence of AFE in Australia, Canada, the Netherlands, the United Kingdom and the USA. Where information was available, the risk factors and outcomes of AFE were examined.</p> <p>Results</p> <p>The reported incidence of AFE ranged from 1.9 cases per 100 000 maternities (UK) to 6.1 per 100 000 maternities (Australia). There was a clear distinction between rates estimated using different methodologies. The lowest estimated incidence rates were obtained through validated case identification (range 1.9-2.5 cases per 100 000 maternities); rates obtained from retrospective analysis of population discharge databases were significantly higher (range 5.5-6.1 per 100 000 admissions with delivery diagnosis). Older maternal age and induction of labour were consistently associated with AFE.</p> <p>Conclusions</p> <p>Recommendation 1: Comparisons of AFE incidence estimates should be restricted to studies using similar methodology. The recommended approaches would be either population-based database studies using additional criteria to exclude false positive cases, or tailored data collection using existing specific population-based systems.</p> <p>Recommendation 2: Comparisons of AFE incidence between and within countries would be facilitated by development of an agreed case definition and an agreed set of criteria to minimise inclusion of false positive cases for database studies.</p> <p>Recommendation 3: Groups conducting detailed population-based studies on AFE should develop an agreed strategy to allow combined analysis of data obtained using consistent methodologies in order to identify potentially modifiable risk factors.</p> <p>Recommendation 4: Future specific studies on AFE should aim to collect information on management and longer-term outcomes for both mothers and infants in order to guide best practice, counselling and service planning.</p

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    De Novo Damaging DNA Coding Mutations Are Associated With Obsessive-Compulsive Disorder and Overlap With Tourette’s Disorder and Autism

    No full text
    BackgroundObsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder with a genetic risk component, yet identification of high-confidence risk genes has been challenging. In recent years, risk gene discovery in other complex psychiatric disorders has been achieved by studying rare de novo (DN) coding variants.MethodsWe performed whole-exome sequencing in 222 OCD parent-child trios (184 trios after quality control), comparing DN variant frequencies with 777 previously sequenced unaffected trios. We estimated the contribution of DN mutations to OCD risk and the number of genes involved. Finally, we looked for gene enrichment in other datasets and canonical pathways.ResultsDN likely gene disrupting and predicted damaging missense variants are enriched in OCD probands (rate ratio, 1.52; p&nbsp;= .0005) and contribute to risk. We identified 2 high-confidence risk genes, each containing 2 DN damaging variants in unrelated probands: CHD8 and SCUBE1. We estimate that 34% of DN damaging variants in OCD contribute to risk and that DN damaging variants in approximately 335 genes contribute to risk in 22% of OCD cases. Furthermore, genes harboring DN damaging variants in OCD are enriched for those reported in neurodevelopmental disorders, particularly Tourette's disorder and autism spectrum disorder. An exploratory network analysis reveals significant functional connectivity and enrichment in canonical pathways, biological processes, and disease networks.ConclusionsOur findings show a pathway toward systematic gene discovery in OCD via identification of DN damaging variants. Sequencing larger cohorts of OCD parent-child trios will reveal more OCD risk genes and will provide needed insights into underlying disease biology

    Examination of the shared genetic basis of anorexia nervosa and obsessive–compulsive disorder

    No full text
    Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are often comorbid and likely to share genetic risk factors. Hence, we examine their shared genetic background using a cross-disorder GWAS meta-analysis of 3495 AN cases, 2688 OCD cases, and 18,013 controls. We confirmed a high genetic correlation between AN and OCD (rg = 0.49 ± 0.13, p = 9.07 × 10-7) and a sizable SNP heritability (SNP h2 = 0.21 ± 0.02) for the cross-disorder phenotype. Although no individual loci reached genome-wide significance, the cross-disorder phenotype showed strong positive genetic correlations with other psychiatric phenotypes (e.g., rg = 0.36 with bipolar disorder and 0.34 with neuroticism) and negative genetic correlations with metabolic phenotypes (e.g., rg = -0.25 with body mass index and -0.20 with triglycerides). Follow-up analyses revealed that although AN and OCD overlap heavily in their shared risk with other psychiatric phenotypes, the relationship with metabolic and anthropometric traits is markedly stronger for AN than for OCD. We further tested whether shared genetic risk for AN/OCD was associated with particular tissue or cell-type gene expression patterns and found that the basal ganglia and medium spiny neurons were most enriched for AN-OCD risk, consistent with neurobiological findings for both disorders. Our results confirm and extend genetic epidemiological findings of shared risk between AN and OCD and suggest that larger GWASs are warranted

    Towards precision medicine in generalized anxiety disorder: Review of genetics and pharmaco(epi)genetics

    No full text
    corecore