60 research outputs found
Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion
<p>Abstract</p> <p>Background</p> <p><it>Arcanobacterium haemolyticum </it>is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD), which we propose promotes bacterial pathogenesis through its action on host cell membranes. The <it>pld </it>gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition.</p> <p>Results</p> <p>Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a <it>pld </it>mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the <it>pld </it>mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or <it>pld </it>mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with <it>A. haemolyticum </it>strains revealed that the <it>pld </it>mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities.</p> <p>Conclusions</p> <p>These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of <it>A. haemolyticum </it>infections.</p
Arcanolysin is a cholesterol-dependent cytolysin of the human pathogen Arcanobacterium haemolyticum
Arcanobacterium haemolyticum is an emerging human pathogen that causes pharyngitis, wound infections, and a variety of occasional invasive diseases. Since its initial discovery in 1946, this Gram positive organism has been known to have hemolytic activity, yet no hemolysin has been previously reported. A. haemolyticum also displays variable hemolytic activity on laboratory blood agar that is dependent upon which species the blood is derived. Here we describe a cholesterol-dependent cytolysin (CDC) secreted by A. haemolyticum, designated arcanolysin (aln), which is present in all strains (n = 52) tested by DNA dot hybridization. Among the known CDCs, ALN is most closely related to pyolysin (PLO) from Trueperella (formerly Arcanobacterium) pyogenes. The aln probe, however, did not hybridize to DNA from T. pyogenes. The aln open reading frame has a lower mol %G+C (46.7%) than the rest of the A. haemolyticum genome (53.1%) and is flanked by two tRNA genes, consistent with probable acquisition by horizontal transfer. The ALN protein (~ 64 kDa) contains a predicted signal sequence, a putative PEST sequence, and a variant undecapeptide within domain 4, which is typically important for function of the toxins. The gene encoding ALN was cloned and expressed in Escherichia coli as a functional recombinant toxin. Recombinant ALN had hemolytic activity on erythrocytes and cytolytic activity on cultured cells from human, rabbit, pig and horse origins but was poorly active on ovine, bovine, murine, and canine cells. ALN was less sensitive to inhibition by free cholesterol than perfringolysin O, consistent with the presence of the variant undecapeptide. ALN is a newly identified CDC with hemolytic activity and unique properties in the CDC family and may be a virulence determinant for A. haemolyticum
Acetic Acid Enables Molecular Enumeration of Mycobacterium tuberculosis from Sputum and Eliminates the Need for a Biosafety Level 3 Laboratory
BACKGROUND: Improved monitoring of Mycobacterium tuberculosis response to treatment is urgently required. We previously developed the molecular bacterial load assay (MBLA), but it is challenging to integrate into the clinical diagnostic laboratory due to a labor-intensive protocol required at biosafety level 3 (BSL-3). A modified assay was needed. METHODS: The rapid enumeration and diagnostic for tuberculosis (READ-TB) assay was developed. Acetic acid was tested and compared to 4 M guanidine thiocyanate to be simultaneously bactericidal and preserve mycobacterial RNA. The extraction was based on silica column technology and incorporated low-cost reagents: 3 M sodium acetate and ethanol for the RNA extraction to replace phenol-chloroform. READ-TB was fully validated and compared directly to the MBLA using sputa collected from individuals with tuberculosis. RESULTS: Acetic acid was bactericidal to M. tuberculosis with no significant loss in 16S rRNA or an unprotected mRNA fragment when sputum was stored in acetic acid at 25°C for 2 weeks or -20°C for 1 year. This novel use of acetic acid allows processing of sputum for READ-TB at biosafety level 2 (BSL-2) on sample receipt. READ-TB is semiautomated and rapid. READ-TB correlated with the MBLA when 85 human sputum samples were directly compared (R2 = 0.74). CONCLUSIONS: READ-TB is an improved version of the MBLA and is available to be adopted by clinical microbiology laboratories as a tool for tuberculosis treatment monitoring. READ-TB will have a particular impact in low- and middle-income countries (LMICs) for laboratories with no BSL-3 laboratory and for clinical trials testing new combinations of anti-tuberculosis drugs
The genome of ε15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage
AbstractThe genome sequence of the Salmonella enterica serovar Anatum-specific, serotype-converting bacteriophage ε15 has been completed. The nonredundant genome contains 39,671 bp and 51 putative genes. It most closely resembles the genome of φV10, an Escherichia coli O157:H7-specific temperate phage, with which it shares 36 related genes. More distant relatives include the Burkholderia cepacia-specific phage, BcepC6B (8 similar genes), the Bordetella bronchiseptica-specific phage, BPP-1 (8 similar genes) and the Photobacterium profundum prophage, P Pφpr1 (6 similar genes).ε15 gene identifications based on homologies with known gene families include the terminase small and large subunits, integrase, endolysin, two holins, two DNA methylase enzymes (one adenine-specific and one cytosine-specific) and a RecT-like enzyme. Genes identified experimentally include those coding for the serotype conversion proteins, the tail fiber, the major capsid protein and the major repressor. ε15's attP site and the Salmonella attB site with which it interacts during lysogenization have also been determined
Extreme Fermi surface smearing in a maximally disordered concentrated solid solution
We show that the Fermi surface can survive the presence of extreme compositional disorder in the equiatomic alloy Ni0.25Fe0.25Co0.25Cr0.25. Our high-resolution Compton scattering experiments reveal a Fermi surface which is smeared across a significant fraction of the Brillouin zone (up to 40% of 2π/a). The extent of this smearing and its variation on and between different sheets of the Fermi surface have been determined, and estimates of the electron mean free path and residual resistivity have been made by connecting this smearing with the coherence length of the quasiparticle states
The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes
Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Coupling Hidden Flows and Waste Generation for Enhanced Materials Flow Accounting
We present an adaptation of an existing materials flow model to account for
waste flows in the domestic environment. The revised approach offers added
functionality for economic parameters that influence waste production and
disposal. Hypothetical waste and resource management futures illustrate the
utility of model. A sensitivity analysis confirms that imports, domestic
extraction and their associated hidden flows impact mostly on wastes generation.
The model offers enhanced utility for policy and decision makers with regard to
economic mass balance and strategic waste flows
Hidden flows and waste processing - an analysis of illustrative futures
An existing materials flow model is adapted (using Excel™ and AMBER™ model
platforms) to account for waste and hidden material flows within a domestic
environment. Supported by national waste data, the implications of legislative
change, domestic resource depletion and waste technology advances are explored.
The revised methodology offers additional functionality for economic parameters
that influence waste generation and disposal. We explore this accounting system
under hypothetical future waste and resource management scenarios, illustrating
the utility of the model. A sensitivity analysis confirms that imports, domestic
extraction and their associated hidden flows impact mostly on waste generation.
The model offers enhanced utility for policy and decision makers with regard to
economic mass balance and strategic waste flows, and may promote further
discussion about waste technology choice in the context of reducing carbon bud
- …