114 research outputs found

    Hepatic iron concentration correlates with insulin sensitivity in non-alcoholic fatty liver disease

    Get PDF
    Rodent and cell‐culture models support a role for iron‐related adipokine dysregulation and insulin resistance in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); however, substantial human data are lacking. We examined the relationship between measures of iron status, adipokines, and insulin resistance in patients with NAFLD in the presence and absence of venesection. This study forms part of the Impact of Iron on Insulin Resistance and Liver Histology in Nonalcoholic Steatohepatitis (IIRON2) study, a prospective randomized controlled trial of venesection for adults with NAFLD. Paired serum samples at baseline and 6 months (end of treatment) in controls (n = 28) and patients who had venesection (n = 23) were assayed for adiponectin, leptin, resistin, retinol binding protein‐4, tumor necrosis factor α, and interleukin‐6, using a Quantibody, customized, multiplexed enzyme‐linked immunosorbent assay array. Hepatic iron concentration (HIC) was determined using MR FerriScan. Unexpectedly, analysis revealed a significant positive correlation between baseline serum adiponectin concentration and HIC, which strengthened after correction for age, sex, and body mass index (rho = 0.36; P = 0.007). In addition, there were significant inverse correlations between HIC and measures of insulin resistance (adipose tissue insulin resistance (Adipo‐IR), serum insulin, serum glucose, homeostasis model assessment of insulin resistance, hemoglobin A1c, and hepatic steatosis), whereas a positive correlation was noted with the insulin sensitivity index. Changes in serum adipokines over 6 months did not differ between the control and venesection groups. Conclusion: HIC positively correlates with serum adiponectin and insulin sensitivity in patients with NAFLD. Further study is required to establish causality and mechanistic explanations for these associations and their relevance in the pathogenesis of insulin resistance and NAFLD

    Stereological analysis of liver biopsy histology sections as a reference standard for validating non-invasive liver fat fraction measurements by MRI

    Get PDF
    © 2016 St. Pierre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background and Aims: Validation of non-invasive methods of liver fat quantification requires a reference standard. However, using standard histopathology assessment of liver biopsies is problematical because of poor repeatability. We aimed to assess a stereological method of measuring volumetric liver fat fraction (VLFF) in liver biopsies and to use the method to validate a magnetic resonance imaging method for measurement of VLFF. Methods: VLFFs were measured in 59 subjects (1) by three independent analysts using a stereological point counting technique combined with the Delesse principle on liver biopsy histological sections and (2) by three independent analysts using the HepaFat-Scan® technique on magnetic resonance images of the liver. Bland Altman statistics and intraclass correlation (IC) were used to assess the repeatability of each method and the bias between the methods of liver fat fraction measurement. Results: Inter-analyst repeatability coefficients for the stereology and HepaFat-Scan® methods were 8.2 (95% CI 7.7-8.8)% and 2.4 (95% CI 2.2-2.5)% VLFF respectively. IC coefficients were 0.86 (95% CI 0.69-0.93) and 0.990 (95% CI 0.985-0.994) respectively. Small biases (=3.4%) were observable between two pairs of analysts using stereology while no significant biases were observable between any of the three pairs of analysts using Hepa-Fat-Scan®. A bias of 1.4±0.5% VLFF was observed between the HepaFat-Scan® method and the stereological method. Conclusions: Repeatability of the stereological method is superior to the previously reported performance of assessment of hepatic steatosis by histopathologists and is a suitable reference standard for validating non-invasive methods of measurement of VLFF

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore