81 research outputs found

    Government Drug Testing: A Question of Reasonableness

    Get PDF
    The 1980s were noted for the escalation of the war on drugs. The dominant public perception was that drug use is a hideous evil that must be stopped, even at a great cost of public resources and personal liberties. Parents, politicians, and law enforcement officials rallied to battle drug use.2 Tremendous expenses and limited victories did not slow the war on drugs.\u27It cannot be disputed that drug abuse is widespread. More than seventy million Americans have experimented with illegal drugs, and twenty-three million currently use an illegal drug.4 The costs to society include drug-related crimes, accidents, lost productivity, increased health costs, and personal suffering.\u27 Drug users\u27 employers bear a large portion of the costs resulting from lost productivity, accidents, illnesses,and related expenses. Some employers have responded by requiring employees to be tested for drug use. The federal government, the Nation\u27s largest employer, is leading the way in drug testing.8 Serious fourth amendment issues arise, however, when the government forces employees to submit to drug testing as a condition of employment. The typical urinalysis of a government employee constitutes a search without a warrant, probable cause, or individualized suspicion that a particular employee violated a law or even a workplace rule. Nevertheless, the United States Supreme Court in 1989 upheld government drug testing programs in National Treasury Employees Union v. Von Raab and Skinner v. Railway Labor Executives\u27 Association.\u27 These cases were among a flood of recent federal and state court decisions allowing mandatory testing of federal, state, and municipal employees and private employees in pervasively regulated industries. These rulings have led several commentators to note that a drug exception to the fourth amendment may be emerging.\u27 Part II of this Note details the executive branch\u27s efforts to per-form drug tests on its employees and on private employees in pervasively regulated industries. Part III traces the Supreme Court\u27s recent erosion of traditional fourth amendment protections against search and seizure. Part IV describes the Supreme Court\u27s analysis of the executive branch\u27s efforts at drug testing. Part V examines the analytical structure that courts use to determine the constitutionality of drug testing by the government. Part VI traces judicial trends in unsettled legal areas. Finally, Part VII concludes that the Court\u27s reasonableness balancing test provides no concrete limit on government searches

    A targeted search for repeating fast radio bursts with the MWA

    Full text link
    We present a targeted search for low-frequency (144--215\,MHz) FRB emission from five repeating FRBs using 23.3\,hr of archival data taken with the Murchison Widefield Array (MWA) Voltage Capture System (VCS) between 2014 September and 2020 May. This is the first time that the MWA VCS has been used to search for FRB signals from known repeaters, which enables much more sensitive FRB searches than previously performed with the standard MWA correlator mode. We performed a standard single pulse search with a temporal and spectral resolution of 400μ400\,\mus and 10\,kHz, respectively, over a 100pccm3100\,\text{pc}\,\text{cm}^{-3} dispersion measure (DM) range centred at the known DM of each studied repeating FRB. No FRBs exceeding a 6σ6\sigma threshold were detected. The fluence upper limits in the range of 32--1175\,Jy\,ms and 36--488\,Jy\,ms derived from 10 observations of FRB 20190711A and four observations of FRB 20201124A respectively, allow us to constrain the spectral indices of their bursts to 1\gtrsim-1 if these two repeaters were active during the MWA observations. If free-free absorption is responsible for our non-detection, we can constrain the size of the absorbing medium in terms of the electron temperature TT to <1.00×(T/104K)1.35pc<1.00\times(T/10^4\text{K})^{-1.35}\,\text{pc}, <0.92×(T/104K)1.35pc<0.92\times(T/10^4\text{K})^{-1.35}\,\text{pc} and <[0.222.50]×(T/104K)1.35pc<[0.22\text{--}2.50]\times(T/10^4\text{K})^{-1.35}\,\text{pc} for FRB 20190117A, 20190711A, and 20201124A, respectively. However, given that the activities of these repeaters are not well characterised, our non-detections could also suggest they were inactive during the MWA observations.Comment: Accepted for publication in MNRA

    Murchison Widefield Array rapid-response observations of the short GRB 180805A

    Get PDF
    Abstract Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a 3σ3\sigma persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in 3σ3\sigma limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a 6σ6\sigma fluence upper-limit range from 570 Jy ms at DM =3000=3\,000 pc cm–3 ( z2.5z\sim 2.5 ) to 1 750 Jy ms at DM =200=200 pc cm–3 ( z0.1)z\sim 0.1) , corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.</jats:p

    MWA rapid follow-up of gravitational wave transients: prospects for detecting prompt radio counterparts

    Full text link
    We present and evaluate the prospects for detecting coherent radio counterparts to gravitational wave (GW) events using Murchison Widefield Array (MWA) triggered observations. The MWA rapid-response system, combined with its buffering mode (4\sim4 minutes negative latency), enables us to catch any radio signals produced from seconds prior to hours after a binary neutron star (BNS) merger. The large field of view of the MWA (1000deg2\sim1000\,\text{deg}^2 at 120\,MHz) and its location under the high sensitivity sky region of the LIGO-Virgo-KAGRA (LVK) detector network, forecast a high chance of being on-target for a GW event. We consider three observing configurations for the MWA to follow up GW BNS merger events, including a single dipole per tile, the full array, and four sub-arrays. We then perform a population synthesis of BNS systems to predict the radio detectable fraction of GW events using these configurations. We find that the configuration with four sub-arrays is the best compromise between sky coverage and sensitivity as it is capable of placing meaningful constraints on the radio emission from 12.6\% of GW BNS detections. Based on the timescales of four BNS merger coherent radio emission models, we propose an observing strategy that involves triggering the buffering mode to target coherent signals emitted prior to, during or shortly following the merger, which is then followed by continued recording for up to three hours to target later time post-merger emission. We expect MWA to trigger on 522\sim5\text{--}22 BNS merger events during the LVK O4 observing run, which could potentially result in two detections of predicted coherent emission.Comment: Accepted for publication in PAS

    Human Uterine Wall Tension Trajectories and the Onset of Parturition

    Get PDF
    Uterine wall tension is thought to be an important determinant of the onset of labor in pregnant women. We characterize human uterine wall tension using ultrasound from the second trimester of pregnancy until parturition and compare preterm, term and twin pregnancies. A total of 320 pregnant women were followed from first antenatal visit to delivery during the period 2000–2004 at the John Hunter Hospital, NSW, Australia. The uterine wall thickness, length, anterior-posterior diameter and transverse diameter were determined by serial ultrasounds. Subjects were divided into three groups: women with singleton pregnancies and spontaneous labor onset, either preterm or term and women with twin pregnancies. Intrauterine pressure results from the literature were combined with our data to form trajectories for uterine wall thickness, volume and tension for each woman using the prolate ellipsoid method and the groups were compared at 20, 25 and 30 weeks gestation. Uterine wall tension followed an exponential curve, with results increasing throughout pregnancy with the site of maximum tension on the anterior wall. For those delivering preterm, uterine wall thickness was increased compared with term. For twin pregnancies intrauterine volume was increased compared to singletons (), but wall thickness was not. There was no evidence for increased tension in those delivering preterm or those with twin gestations. These data are not consistent with a role for high uterine wall tension as a causal factor in preterm spontaneous labor in singleton or twin gestations. It seems likely that hormonal differences in multiple gestations are responsible for increased rates of preterm birth in this group rather than increased tension

    A Helical Structural Nucleus Is the Primary Elongating Unit of Insulin Amyloid Fibrils

    Get PDF
    Although amyloid fibrillation is generally believed to be a nucleation-dependent process, the nuclei are largely structurally uncharacterized. This is in part due to the inherent experimental challenge associated with structural descriptions of individual components in a dynamic multi-component equilibrium. There are indications that oligomeric aggregated precursors of fibrillation, and not mature fibrils, are the main cause of cytotoxicity in amyloid disease. This further emphasizes the importance of characterizing early fibrillation events. Here we present a kinetic x-ray solution scattering study of insulin fibrillation, revealing three major components: insulin monomers, mature fibrils, and an oligomeric species. Low-resolution three-dimensional structures are determined for the fibril repeating unit and for the oligomer, the latter being a helical unit composed of five to six insulin monomers. This helical oligomer is likely to be a structural nucleus, which accumulates above the supercritical concentration used in our experiments. The growth rate of the fibrils is proportional to the amount of the helical oligomer present in solution, suggesting that these oligomers elongate the fibrils. Hence, the structural nucleus and elongating unit in insulin amyloid fibrillation may be the same structural component above supercritical concentrations. A novel elongation pathway of insulin amyloid fibrils is proposed, based on the shape and size of the fibrillation precursor. The distinct helical oligomer described in this study defines a conceptually new basis of structure-based drug design against amyloid diseases

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF
    Objective: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and crossvalidated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS metaanalysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures. Methods: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses. Results: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values &lt;5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors. Conclusions: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    corecore