2,645 research outputs found

    Joint Reconstruction of Multi-view Compressed Images

    Full text link
    The distributed representation of correlated multi-view images is an important problem that arise in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed correlated images are jointly decoded in order to improve the reconstruction quality of all the compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG, H.264 intra) with a balanced rate distribution among different cameras. A central decoder first estimates the underlying correlation model from the independently compressed images which will be used for the joint signal recovery. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images that comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be consistent with their compressed versions. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our proposed algorithm compares advantageously to state-of-the-art distributed coding schemes based on disparity learning and on the DISCOVER

    A Criterion That Determines Fast Folding of Proteins: A Model Study

    Full text link
    We consider the statistical mechanics of a full set of two-dimensional protein-like heteropolymers, whose thermodynamics is characterized by the coil-to-globular (TθT_\theta) and the folding (TfT_f) transition temperatures. For our model, the typical time scale for reaching the unique native conformation is shown to scale as τfF(M)exp(σ/σ0)\tau_f\sim F(M)\exp(\sigma/\sigma_0), where σ=1Tf/Tθ\sigma=1-T_f/T_\theta, MM is the number of residues, and F(M)F(M) scales algebraically with MM. We argue that TfT_f scales linearly with the inverse of entropy of low energy non-native states, whereas TθT_\theta is almost independent of it. As σ0\sigma\rightarrow 0, non-productive intermediates decrease, and the initial rapid collapse of the protein leads to structures resembling the native state. Based solely on {\it accessible} information, σ\sigma can be used to predict sequences that fold rapidly.Comment: 10 pages, latex, figures upon reques

    Cellular signaling networks function as generalized Wiener-Kolmogorov filters to suppress noise

    Get PDF
    Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov (WK) optimal noise filter. Using concepts from umbral calculus, we generalize the linear WK theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function---like ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways, and the manipulation of pathways through experimental probes like oscillatory input.Comment: 15 pages, 5 figures; to appear in Phys. Rev.

    Dissecting Ubiquitin Folding Using the Self-Organized Polymer Model

    Full text link
    Folding of Ubiquitin (Ub) is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained Self-Organized-Polymer model with side chains. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At TmT_m Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at TmT_m, with multiple transitions between the folded and unfolded states, show a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of μsec\mu sec then Ub folding follows the diffusion-collision mechanism with intermediates many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a PfoldP_{fold} analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings are not only in agreement with experiments but also provide missing details not resolvable in standard experiments

    Multiple barriers in forced rupture of protein complexes

    Full text link
    Curvatures in the most probable rupture force (ff^*) versus log-loading rate (logrf\log{r_f}) observed in dynamic force spectroscopy (DFS) on biomolecular complexes are interpreted using a one-dimensional free energy profile with multiple barriers or a single barrier with force-dependent transition state. Here, we provide a criterion to select one scenario over another. If the rupture dynamics occurs by crossing a single barrier in a physical free energy profile describing unbinding, the exponent ν\nu, from (1f/fc)1/ν(logrf)(1- f^*/f_c)^{1/\nu}\sim(\log r_f) with fcf_c being a critical force in the absence of force, is restricted to 0.5ν10.5 \leq \nu \leq 1. For biotin-ligand complexes and leukocyte-associated antigen-1 bound to intercellular adhesion molecules, which display large curvature in the DFS data, fits to experimental data yield ν<0.5\nu<0.5, suggesting that ligand unbinding is associated with multiple-barrier crossing.Comment: 8 pages, 5 figure
    corecore