58 research outputs found

    Impact of dietary manganese on intestinal barrier and inflammatory response in broilers challenged with Salmonella Typhimurium

    Get PDF
    Growing concern for public health and food safety has prompted a special interest in developing nutritional strategies for removing waterborne and foodborne pathogens, including Salmonella. Strong links between manganese (Mn) and intestinal barrier or immune function hint that dietary Mn supplementation is likely to be a promising approach to limit the loads of pathogens in broilers. Here, we provide evidence that Salmonella Typhimurium (S. Typhimurium, 4 × 108 CFUs) challenge-induced intestinal injury along with systemic Mn redistribution in broilers. Further examining of the effect of dietary Mn treatments (a basal diet plus additional 0, 40, or 100 mg Mn/kg for corresponding to Mn-deficient, control, or Mn-surfeit diet, respectively) on intestinal barrier and inflammation status of broilers infected with S. Typhimurium revealed that birds fed the control and Mn-surfeit diets exhibited improved intestinal tight junctions and microbiota composition. Even without Salmonella infection, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In addition, when fed the control and Mn-surfeit diets, birds showed decreased Salmonella burdens in cecal content and spleen, with a concomitant increase in inflammatory cytokine levels in spleen. Furthermore, the dietary Mn-supplementation-mediated induction of cytokine production was probably associated with the nuclear factor kappa-B (NF-ÎșB)/hydrogen peroxide (H2O2) pathway, as judged by the enhanced manganese superoxide dismutase activity and the increased H2O2 level in mitochondria, together with the increased mRNA level of NF-ÎșB in spleen. Ingenuity-pathway analysis indicated that acute-phase response pathways, T helper type 1 pathway, and dendritic cell maturation were significantly activated by the dietary Mn supplementation. Our data suggest that dietary Mn supplementation could enhance intestinal barrier and splenic inflammatory response to fight against Salmonella infection in broilers

    Normal spermatogenesis in Fank1 (fibronectin type 3 and ankyrin repeat domains 1) mutant mice

    Get PDF
    Background The fibronectin type 3 and ankyrin repeat domains 1 gene, Fank1, is an ancient, evolutionarily conserved gene present in vertebrates. Short-hairpin RNA (shRNA)-based knockdown transgenic mice have oligospermia caused by an increase in apoptotic germ cells. In this study, we investigated the in vivo function of Fank1. Methods In this study, we generated Fank1-knockout mice using the CRISPR/Cas9 system. We then investigated the phenotype and in vivo function of Fank1. Testes and epididymis tissues were analyzed by histological and immunofluorescence staining. Apoptotic cells were analyzed in terminal deoxynucleotidyl transferase dUTP nick end-labeling assays. Fertility and sperm counts were also evaluated. The GTEx database were used to assess gene expression quantitative trait loci and mRNA expression of candidate genes and genes neighboring single nucleotide polymorphisms was analyzed by quantitative RT-PCR. Results In contrast to the Fank1-knockdown model, no significant changes in epididymal sperm content and the number of apoptotic cells were observed in Fank1−/− homozygotes. In addition, a different pattern of Dusp1, Klk1b21 and Klk1b27 mRNA expression was detected in Fank1-knockout testis. These results reveal differences in the molecular changes between Fank1-knockdown mice and Fank1-knockout mice and provide a basic resource for population genetics studies

    EPLIN expression in gastric cancer and impact on prognosis and chemoresistance

    Get PDF
    Epithelial protein lost in neoplasm (EPLIN) has been implicated as a suppressor of cancer progression. The current study explored EPLIN expression in clinical gastric cancer and its association with chemotherapy resistance. EPLIN transcript expression, in conjunction with patient clinicopathological information and responsiveness to neoadjuvant chemotherapy (NAC), was explored in two gastric cancer cohorts collected from the Beijing Cancer Hospital. Kaplan-Meier survival analysis was undertaken to explore EPLIN association with patient survival. Reduced EPLIN expression was associated with significant or near significant reductions of overall, disease-free, first progression or post-progression survival in the larger host cohort and Kaplan Meier plotter datasets. In the larger cohort EPLIN expression was significantly higher in the combined T1 + T2 gastric cancer group compared to the T3 + T4 group and identified to be an independent prognostic factor of disease-free survival and overall survival by multivariate analysis. In the smaller, NAC cohort, EPLIN expression was found to be significantly lower in tumour tissues than in paratumour tissues. EPLIN expression was significantly associated with responsiveness to chemotherapy which contributes to overall survival. Together, EPLIN appears to be a prognostic factor and may be associated with patient sensitivity to NAC

    Metastatic Lymph Node 64 (MLN64) expression in gastric cancer, the clinical and molecular implications in drug resistance

    Get PDF
    Background/Aim: Metastatic Lymph Node 64 (MLN64) is often co-amplified with ERBB2 (HER2) and plays a role in the progression of breast and prostate cancers. The present study explored the expression of MLN64 in clinical gastric cancer in association with the ERBB family and its impact on drug resistance in patients. Materials and Methods: Two independent gastric cancer cohorts (n=324; n=87) were used to explore the expression profile of MLN64 in con-junction with ERBB family members in clinical gastric cancer and its association with neoad-juvant chemotherapy responses. Gastric cancer AGS and HCG27 cells with MLN64 knock-down were generated to determine the function of MLN64 in cell behavioral changes. Results: Gastric tumor tissues expressed significantly increased levels of MLN64 compared with normal tissues (p<0.01); however, MLN64 alone was a weak prognostic indicator. An integrated co-expression of MLN64, ERBB4, and NRG4 was a significant factor in assessing overall survival in both cohorts. MLN64 was a profound indicator of patient response to neoadjuvant chemotherapy. In vitro studies indicated a significant contribution of MLN64 to the response of gastric cancer cells to chemodrugs and Her-2 inhibitors. MLN64 knockdown also contributed to the adhesiveness and migration and suggested a possible mechanism mediated by the in-teraction between MLN64 and ERBBs. Conclusion: MLN64 is an indicator for patient response to neoadjuvant chemotherapies in gastric cancer. Together with the expression pattern of ERBB4, it makes is a poor prognostic factor in gastric cancer patients

    Thyroid function and associated mood changes after COVID-19 vaccines in patients with Hashimoto thyroiditis

    Get PDF
    ContextSevere acute respiratory syndrome-coronavirus 2 (COVID-19) vaccines may incur changes in thyroid functions followed by mood changes, and patients with Hashimoto thyroiditis (HT) were suggested to bear a higher risk.ObjectivesWe primarily aim to find whether COVID-19 vaccination could induce potential subsequent thyroid function and mood changes. The secondary aim was to find inflammatory biomarkers associated with risk.MethodsThe retrospective, multi-center study recruited patients with HT receiving COVID-19–inactivated vaccines. C-reactive proteins (CRPs), thyroid-stimulating hormones (TSHs), and mood changes were studied before and after vaccination during a follow-up of a 6-month period. Independent association was investigated between incidence of mood state, thyroid functions, and inflammatory markers. Propensity score–matched comparisons between the vaccine and control groups were carried out to investigate the difference.ResultsFinal analysis included 2,765 patients with HT in the vaccine group and 1,288 patients in the control group. In the matched analysis, TSH increase and mood change incidence were both significantly higher in the vaccine group (11.9% versus 6.1% for TSH increase and 12.7% versus 8.4% for mood change incidence). An increase in CRP was associated with mood change (p&lt; 0.01 by the Kaplan–Meier method) and severity (r = 0.75) after vaccination. Baseline CRP, TSH, and antibodies of thyroid peroxidase (anti-TPO) were found to predict incidence of mood changes.ConclusionCOVID-19 vaccination seemed to induce increased levels and incidence of TSH surge followed by mood changes in patients with HT. Higher levels of pre-vaccine serum TSH, CRP, and anti-TPO values were associated with higher incidence in the early post-vaccine phase

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Spatial organization of endometrial gene expression at the onset of embryo attachment in pigs

    Get PDF
    BACKGROUND: During the preimplantation phase in the pig, the conceptus trophoblast elongates into a filamentous form and secretes estrogens, interleukin 1 beta 2, interferons, and other signaling molecules before attaching to the uterine epithelium. The processes in the uterine endometrium in response to conceptus signaling are complex. Thus, the objective of this study was to characterize transcriptome changes in porcine endometrium during the time of conceptus attachment considering the specific localization in different endometrial cell types. RESULTS: Low-input RNA-sequencing was conducted for the main endometrial compartments, luminal epithelium (LE), glandular epithelium (GE), blood vessels (BV), and stroma. Samples were isolated from endometria collected on Day 14 of pregnancy and the estrous cycle (each group n = 4) by laser capture microdissection. The expression of 12,000, 11,903, 11,094, and 11,933 genes was detectable in LE, GE, BV, and stroma, respectively. Differential expression analysis was performed between the pregnant and cyclic group for each cell type as well as for a corresponding dataset for complete endometrium tissue samples. The highest number of differentially expressed genes (DEGs) was found for LE (1410) compared to GE, BV, and stroma (800, 1216, and 384). For the complete tissue, 3262 DEGs were obtained. The DEGs were assigned to Gene Ontology (GO) terms to find overrepresented functional categories and pathways specific for the individual endometrial compartments. GO classification revealed that DEGs in LE were involved in 'biosynthetic processes', 'related to ion transport', and 'apoptotic processes', whereas 'cell migration', 'cell growth', 'signaling', and 'metabolic/biosynthetic processes' categories were enriched for GE. For blood vessels, categories such as 'focal adhesion', 'actin cytoskeleton', 'cell junction', 'cell differentiation and development' were found as overrepresented, while for stromal samples, most DEGs were assigned to 'extracellular matrix', 'gap junction', and 'ER to Golgi vesicles'. CONCLUSIONS: The localization of differential gene expression to different endometrial cell types provided a significantly improved view on the regulation of biological processes involved in conceptus implantation, such as the control of uterine fluid secretion, trophoblast attachment, growth regulation by Wnt signaling and other signaling pathways, as well as the modulation of the maternal immune system

    Spatial organization of endometrial gene expression at the onset of embryo attachment in pigs

    No full text
    Background During the preimplantation phase in the pig, the conceptus trophoblast elongates into a filamentous form and secretes estrogens, interleukin 1 beta 2, interferons, and other signaling molecules before attaching to the uterine epithelium. The processes in the uterine endometrium in response to conceptus signaling are complex. Thus, the objective of this study was to characterize transcriptome changes in porcine endometrium during the time of conceptus attachment considering the specific localization in different endometrial cell types. Results Low-input RNA-sequencing was conducted for the main endometrial compartments, luminal epithelium (LE), glandular epithelium (GE), blood vessels (BV), and stroma. Samples were isolated from endometria collected on Day 14 of pregnancy and the estrous cycle (each group n = 4) by laser capture microdissection. The expression of 12,000, 11,903, 11,094, and 11,933 genes was detectable in LE, GE, BV, and stroma, respectively. Differential expression analysis was performed between the pregnant and cyclic group for each cell type as well as for a corresponding dataset for complete endometrium tissue samples. The highest number of differentially expressed genes (DEGs) was found for LE (1410) compared to GE, BV, and stroma (800, 1216, and 384). For the complete tissue, 3262 DEGs were obtained. The DEGs were assigned to Gene Ontology (GO) terms to find overrepresented functional categories and pathways specific for the individual endometrial compartments. GO classification revealed that DEGs in LE were involved in ‘biosynthetic processes’, ‘related to ion transport’, and ‘apoptotic processes’, whereas ‘cell migration’, ‘cell growth’, ‘signaling’, and ‘metabolic/biosynthetic processes’ categories were enriched for GE. For blood vessels, categories such as ‘focal adhesion’, ‘actin cytoskeleton’, ‘cell junction’, ‘cell differentiation and development’ were found as overrepresented, while for stromal samples, most DEGs were assigned to ‘extracellular matrix’, ‘gap junction’, and ‘ER to Golgi vesicles’. Conclusions The localization of differential gene expression to different endometrial cell types provided a significantly improved view on the regulation of biological processes involved in conceptus implantation, such as the control of uterine fluid secretion, trophoblast attachment, growth regulation by Wnt signaling and other signaling pathways, as well as the modulation of the maternal immune system

    Cell type-specific analysis of transcriptome changes in the porcine endometrium on Day 12 of pregnancy

    Get PDF
    BACKGROUND: Along with trophoblast elongation (Days 10 to 12), estradiol is secreted in increasing amounts for recognition of pregnancy. Endometrial secretions driven by ovarian progesterone and conceptus signals are essential for conceptus growth and development. Results of transcriptome analyses of whole endometrial tissue samples in the pig indicated the need for cell type-specific endometrial gene expression analysis for a better understanding of transcriptome changes associated with establishment of pregnancy. RESULTS: The most distinct transcriptome profile and the majority of differentially expressed genes (DEGs) were identified in luminal epithelium (LE). Many DEGs were found only in the cell type-specific analysis. The functional classification of DEGs identified in specific endometrial cell types revealed various distinct functions and pathways. Genes related to immune activation, estrogen signalling pathway, embryo development, and cell proliferation were upregulated in LE of pregnant gilts. Genes involved in sterol biosynthetic and metabolic processes and extracellular matrix were upregulated in stroma. Genes associated with cell communication such as via exosomes and vesicles were found as differential in LE, glandular epithelium (GE), and stroma (S). CONCLUSIONS: This study revealed that conceptus signals induce different transcriptomic regulations in the endometrial compartments/cell types related to their specific function during recognition and establishment of pregnancy
    • 

    corecore