2,229 research outputs found

    Multi-technique geochronology of intrusive and explosive activity on Piton des Neiges Volcano, Réunion Island

    Get PDF
    MD was supported by the AuScope NCRIS2 program, Australian Research Council (ARC) Discovery funding scheme (DP160102427) and Curtin Research Fellowship. CP was supported by the company Austral Energy and by the ANRT CIFRE program (agreement n°2017/1175).The construction of ocean island basaltic volcanoes consists of a succession of eruptions, intrusions, and metamorphism. These events are often temporally ill-constrained because the most widely used radiometric dating methods applicable to mafic volcanic rocks (K-Ar or 40Ar/39Ar on whole rock or groundmass) are prone to inaccuracy when applied to slowly-cooled, altered, or vesicular and aphyric products. Here we adopt a multi-technique geochronology approach (including zircon U-Pb, phlogopite 40Ar/39Ar, zircon and apatite (U-Th)/He, and zircon double-dating) to demonstrate its efficacy when applied to basaltic volcanoes. Taking the main volcano of Réunion Island (Piton des Neiges) as a case study, we establish the time of the major plutonic, metamorphic, and explosive events that had resisted previous dating attempts. We document four stages of pluton emplacement and metamorphism at 2200 - 2000 ka, 1414 ± 8 ka, 665 ± 78 ka, and 150 - 110 ka, all coinciding with volcanism revival after quiescent intervals. We also date a major Plinian eruption at 188.2 ± 10.4 ka, coeval with the formation age of a large caldera, and, finally, we constrain the last eruption of Piton des Neiges to 27 ka, revising a previous estimate of 12 ka. By resolving several conundrums of Réunion's geological history, our multi-technique geochronology approach reveals that endogenous growth of a volcanic island proceeds as pulses at the beginning of renewed volcanism. We also demonstrate that cross-checking eruptions ages by diversified dating techniques is important to better assess the timing and recurrence of basaltic volcanic activity, with implications for hazard prediction.Publisher PDFPeer reviewe

    Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers

    Get PDF
    Great prominence is put on the design of aeronautical gas turbines due to increasingly stringent regulations and the need to tackle rising fuel prices. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. Since one of the most limiting factors in performing Large Eddy Simulation (LES) of real combustors is estimating the adequate grid, the effects of mesh resolution are investigated by computing full annular LES of a realistic helicopter combustion chamber on three grids, respectively made of 38, 93 and 336 million elements. Results are compared in terms of mean and fluctuating fields. LES captures self-established azimuthal modes. The presence and structure of the modes is discussed. This study therefore highlights the potential of LES for studying combustion instabilities in annular gas turbine combustors

    Diapycnal mixing in the Antarctic Circumpolar Current

    Get PDF
    Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 241-246, doi:10.1175/2010JPO4557.1.The vertical dispersion of a tracer released on a density surface near 1500-m depth in the Antarctic Circumpolar Current west of Drake Passage indicates that the diapycnal diffusivity, averaged over 1 yr and over tens of thousands of square kilometers, is (1.3 ± 0.2) × 10−5 m2 s−1. Diapycnal diffusivity estimated from turbulent kinetic energy dissipation measurements about the area occupied by the tracer in austral summer 2010 was somewhat less, but still within a factor of 2, at (0.75 ± 0.07) × 10−5 m2 s−1. Turbulent diapycnal mixing of this intensity is characteristic of the midlatitude ocean interior, where the energy for mixing is believed to derive from internal wave breaking. Indeed, despite the frequent and intense atmospheric forcing experienced by the Southern Ocean, the amplitude of finescale velocity shear sampled about the tracer was similar to background amplitudes in the midlatitude ocean, with levels elevated to only 20%–50% above the Garrett–Munk reference spectrum. These results add to a long line of evidence that diapycnal mixing in the interior middepth ocean is weak and is likely too small to dictate the middepth meridional overturning circulation of the ocean.This material is based upon work supported by the National Science Foundation Grants OCE-0622825,OCE-0622670, OCE-0622630, and OCE-0623177

    Finescale structure of the T-S relation in the eastern North Atlantic

    Get PDF
    Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 1437-1454, doi:10.1175/JPO2763.1.Distributions of temperature (T) and salinity (S) and their relationship in the oceans are the result of a balance between T–S variability generated at the surface by air–sea fluxes and its removal by molecular dissipation. In this paper the role of different motions in setting the cascade of T–S variance to dissipation scales is quantified using data from the North Atlantic Tracer Release Experiment (NATRE). The NATRE observational programs include fine- and microscale measurements and provide a snapshot of T–S variability across a wide range of scales from basin to molecular. It is found that microscale turbulence controls the rate of thermal dissipation in the thermocline. At this level the T–S relation is established through a balance between large-scale advection by the gyre circulation and small-scale turbulence. Further down, at the level of intermediate and Mediterranean waters, mesoscale eddies are the rate-controlling process. The transition between the two regimes is related to the presence of a strong salinity gradient along density surfaces associated with the outflow of Mediterranean waters. Mesoscale eddies stir this gradient and produce a rich filamentation and salinity-compensated temperature inversions: isopycnal stirring and diapycnal mixing are both required to explain the T–S relation at depth.Office of Naval Research under Award N00014-03-1-0354

    A Behavioral Odor Similarity “Space” in Larval Drosophila

    Get PDF
    To provide a behavior-based estimate of odor similarity in larval Drosophila, we use 4 recognition-type experiments: 1) We train larvae to associate an odor with food and then test whether they would regard another odor as the same as the trained one. 2) We train larvae to associate an odor with food and test whether they prefer the trained odor against a novel nontrained one. 3) We train larvae differentially to associate one odor with food, but not the other one, and test whether they prefer the rewarded against the nonrewarded odor. 4) In an experiment like (3), we test the larvae after a 30-min break. This yields a combined task-independent estimate of perceived difference between odor pairs. Comparing these perceived differences to published measures of physicochemical difference reveals a weak correlation. A notable exception are 3-octanol and benzaldehyde, which are distinct in published accounts of chemical similarity and in terms of their published sensory representation but nevertheless are consistently regarded as the most similar of the 10 odor pairs employed. It thus appears as if at least some aspects of olfactory perception are “computed” in postreceptor circuits on the basis of sensory signals rather than being immediately given by them

    Toward Regional Characterizations of the Oceanic Internal Wavefield

    Get PDF
    Many major oceanographic internal wave observational programs of the last 4 decades are reanalyzed in order to characterize variability of the deep ocean internal wavefield. The observations are discussed in the context of the universal spectral model proposed by Garrett and Munk. The Garrett and Munk model is a good description of wintertime conditions at Site-D on the continental rise north of the Gulf Stream. Elsewhere and at other times, significant deviations in terms of amplitude, separability of the 2-D vertical wavenumber - frequency spectrum, and departure from the model's functional form are noted. Subtle geographic patterns are apparent in deviations from the high frequency and high vertical wavenumber power laws of the Garrett and Munk spectrum. Moreover, such deviations tend to co-vary: whiter frequency spectra are partnered with redder vertical wavenumber spectra. Attempts are made to interpret the variability in terms of the interplay between generation, propagation and nonlinearity using a statistical radiative balance equation. This process frames major questions for future research with the insight that such integrative studies could constrain both observationally and theoretically based interpretations

    Statistical study of the prompt-fission γ -ray spectrum for U 238 (n, f) in the fast-neutron region STATISTICAL STUDY of the PROMPT-FISSION ... L. QI et al.

    Get PDF
    Prompt-fission γ-ray spectra (PFGS) have been measured for the U238(n,f) reaction using fast neutrons produced by the LICORNE directional neutron source. Fission events were detected with an ionization chamber containing actinide samples placed in the neutron beam, and the coincident prompt-fission γ rays were measured using a number of LaBr3 scintillation detectors and a cluster of nine phoswich detectors from the PARIS array. Prompt-fission γ rays (PFGs) were discriminated from prompt-fission neutrons using the time-of-flight technique over distances of around 35 cm. PFG emission spectra were measured at two incident neutron energies of 1.9 and 4.8 MeV for U238(n,f) and also for Cf252(sf) as a reference. Spectral characteristics of PFG emission, such as mean γ multiplicity and average total γ-ray energy per fission, as well as the average γ-ray energy, were extracted. The sensitivity of these results to the width of the time window and the type of spectral unfolding procedure used to correct for the detector responses was studied. Iteration methods were found to be more stable in low-statistics data sets. The measured values at En=1.9MeV were found to be the mean γ multiplicity Mγ=6.54±0.19, total released energy per fission Eγ,tot=5.25±0.20 MeV, and the average γ-ray energy ϵγ=0.80±0.04 MeV. Under similar conditions, the values at En=4.8MeV were measured to be Mγ=7.31±0.46, Eγ,tot=6.18±0.65 MeV, and ϵγ=0.84±0.11 MeV

    Empirical diagnostics of the starburst-AGN connection

    Get PDF
    We examine a representative sample of 35 Seyfert 2 nuclei. Previous work has shown that nearly 1/2 of these nuclei show the direct (but difficult-to-detect) spectroscopic signatures at optical-UV wavelengths of the hot massive stars that power circum-nuclear starbursts. In this paper we examine a variety of more-easily-measured quantities for this sample, such as the equivalent widths of strong absorption features, continuum colors, emission line equivalent widths, ratios and profiles, far-IR luminosities and near-UV surface brightness. We compare the composite starburst+Seyfert 2 nuclei to ``pure'' Seyfert 2's, Starburst galaxies and normal galactic nuclei. Our goals are to verify whether these properties in composite nuclei are consistent with the expected impact of a starburst, and to investigate alternative less-demanding methods to infer the presence of starbursts in Seyfert 2's, applicable to larger or more distant samples. We show that starbursts do indeed leave clear and easily quantifiable imprints on the near-UV to optical continuum range. Composite starburst+Seyfert 2 systems can be recognized by: (1) a strong ``Featureless Continuum'' which dilutes the CaII K line from the host's bulge to W_K < 10 A; (2) emission lines whose equivalent widths are intermediate between Starburst galaxies and ``pure'' Seyfert 2's; (3) relatively low excitation line-ratios, which indicate that part of the gas ionization in these Seyfert 2's (typically \sim 50% of Hbeta) is due to photoionization by OB stars; (4) large far IR luminosities (> 10^10 Lsun); (5) High near-UV surface brightness (~10^3 Lsun/pc^2). These characteristics are all consistent with the expected impact of circum-nuclear starbursts on the observed properties of Seyfert 2's. (abridged)Comment: ApJ in press - 67(!) pages (including 15 figures

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore