35 research outputs found

    A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task.

    Get PDF
    Response inhibition is essential for navigating everyday life. Its derailment is considered integral to numerous neurological and psychiatric disorders, and more generally, to a wide range of behavioral and health problems. Response-inhibition efficiency furthermore correlates with treatment outcome in some of these conditions. The stop-signal task is an essential tool to determine how quickly response inhibition is implemented. Despite its apparent simplicity, there are many features (ranging from task design to data analysis) that vary across studies in ways that can easily compromise the validity of the obtained results. Our goal is to facilitate a more accurate use of the stop-signal task. To this end, we provide 12 easy-to-implement consensus recommendations and point out the problems that can arise when they are not followed. Furthermore, we provide user-friendly open-source resources intended to inform statistical-power considerations, facilitate the correct implementation of the task, and assist in proper data analysis

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder

    Get PDF
    Background Attention-deficit/hyperactivity disorder (ADHD) shows substantial heritability and is 2-7 times more common in males than females. We examined two putative genetic mechanisms underlying this sex bias: sex-specific heterogeneity and higher burden of risk in female cases. Methods We analyzed genome-wide autosomal common variants from the Psychiatric Genomics Consortium and iPSYCH Project (20,183 cases, 35,191 controls) and Swedish populationregister data (N=77,905 cases, N=1,874,637 population controls). Results Genetic correlation analyses using two methods suggested near complete sharing of common variant effects across sexes, with rg estimates close to 1. Analyses of population data, however, indicated that females with ADHD may be at especially high risk of certain comorbid developmental conditions (i.e. autism spectrum disorder and congenital malformations), potentially indicating some clinical and etiological heterogeneity. Polygenic risk score (PRS) analysis did not support a higher burden of ADHD common risk variants in female cases (OR=1.02 [0.98-1.06], p=0.28). In contrast, epidemiological sibling analyses revealed that the siblings of females with ADHD are at higher familial risk of ADHD than siblings of affected males (OR=1.14, [95% CI: 1.11-1.18], p=1.5E-15). Conclusions Overall, this study supports a greater familial burden of risk in females with ADHD and some clinical and etiological heterogeneity, based on epidemiological analyses. However, molecular genetic analyses suggest that autosomal common variants largely do not explain the sex bias in ADHD prevalence

    Investigation of the relationship of attention deficit hyperactivity disorder to the EKN1 gene on chromosome 15q21

    No full text
    Recently a gene, termed EKN1, has been identified because of a chromosomal breakpoint that occurred in this gene. This chromosomal breakpoint was found in 4 family members that had specific reading disabilities (RDs), indicating that disruption of this gene may be contributing to the risk of developing RDs. This gene was further supported as contributing to RD by association studies. Because of the evidence from twin studies for shared genetic factors contributing to RD and attention deficit hyperactivity disorder (ADHD), particularly inattention symptoms, we investigated the relationship of DNA markers in this gene to ADHD and ADHD symptoms in a sample of 186 nuclear families (probands, their parents, and affected siblings) collected through a proband with ADHD. We used 6 polymorphic DNA markers located across the gene, including the 2 markers previously reported to be associated with RD in a Finnish sample and a marker associated with RD in a sample of families collected in Toronto. We found a trend for association for several markers to the ADHD phenotype analyzed as a categorical trait using the transmission disequilibrium test and significant evidence for biased transmission of the haplotypes containing these markers, χ2(3) = 9.312, p =. 025. Using quantitative analysis, we observed evidence for association of one of the haplotypes to the inattention and hyperactive/impulsive symptom dimensions as reported by parents and to the inattention symptoms as reported by teachers, as well as a trend for association with the reading phenotypes of word identification and decoding. The results provide preliminary support for the role of the EKN1 chromosomal region in ADHD, suggesting that this region may contribute to ADHD symptoms in addition to RD

    Froilán Carvajal: novela e historia

    Get PDF
    ObjectiveAttention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder. Because of its multifactorial etiology, however, identifying the genes involved has been difficult. The authors followed up on recent findings suggesting that rare copy number variants (CNVs) may be important for ADHD etiology.MethodThe authors performed a genome-wide analysis of large, rare CNVs (<1% population frequency) in children with ADHD (N=896) and comparison subjects (N=2,455) from the IMAGE II Consortium.ResultsThe authors observed 1,562 individually rare CNVs >100 kb in size, which segregated into 912 independent loci. Overall, the rate of rare CNVs >100 kb was 1.15 times higher in ADHD case subjects relative to comparison subjects, with duplications spanning known genes showing a 1.2-fold enrichment. In accordance with a previous study, rare CNVs >500 kb showed the greatest enrichment (1.28-fold). CNVs identified in ADHD case subjects were significantly enriched for loci implicated in autism and in schizophrenia. Duplications spanning the CHRNA7 gene at chromosome 15q13.3 were associated with ADHD in single-locus analysis. This finding was consistently replicated in an additional 2,242 ADHD case subjects and 8,552 comparison subjects from four independent cohorts from the United Kingdom, the United States, and Canada. Presence of the duplication at 15q13.3 appeared to be associated with comorbid conduct disorder.ConclusionsThese findings support the enrichment of large, rare CNVs in ADHD and implicate duplications at 15q13.3 as a novel risk factor for ADHD. With a frequency of 0.6% in the populations investigated and a relatively large effect size (odds ratio=2.22, 95% confidence interval=1.5–3.6), this locus could be an important contributor to ADHD etiology

    Meta-analysis of genome-wide association studies of hoarding symptoms in 27,537 individuals

    Get PDF
    Hoarding Disorder (HD) is a mental disorder characterized by persistent difficulties discarding or parting with possessions, often resulting in cluttered living spaces, distress, and impairment. Its etiology is largely unknown, but twin studies suggest that it is moderately heritable. In this study, we pooled phenotypic and genomic data from seven international cohorts (N = 27,537 individuals) and conducted a genome wide association study (GWAS) meta-analysis of parent- or self-reported hoarding symptoms (HS). We followed up the results with gene-based and gene-set analyses, as well as leave-one-out HS polygenic risk score (PRS) analyses. To examine a possible genetic association between hoarding symptoms and other phenotypes we conducted cross-trait PRS analyses. Though we did not report any genome-wide significant SNPs, we report heritability estimates for the twin-cohorts between 26–48%, and a SNP-heritability of 11% for an unrelated sub-cohort. Cross-trait PRS analyses showed that the genetic risk for schizophrenia and autism spectrum disorder were significantly associated with hoarding symptoms. We also found suggestive evidence for an association with educational attainment. There were no significant associations with other phenotypes previously linked to HD, such as obsessive-compulsive disorder, depression, anxiety, or attention-deficit hyperactivity disorder. To conclude, we found that HS are heritable, confirming and extending previous twin studies but we had limited power to detect any genome-wide significant loci. Much larger samples will be needed to further extend these findings and reach a “gene discovery zone”. To move the field forward, future research should not only include genetic analyses of quantitative hoarding traits in larger samples, but also in samples of individuals meeting strict diagnostic criteria for HD, and more ethnically diverse samples
    corecore