4,602 research outputs found

    Activity Recognition using Hierarchical Hidden Markov Models on Streaming Sensor Data

    Full text link
    Activity recognition from sensor data deals with various challenges, such as overlapping activities, activity labeling, and activity detection. Although each challenge in the field of recognition has great importance, the most important one refers to online activity recognition. The present study tries to use online hierarchical hidden Markov model to detect an activity on the stream of sensor data which can predict the activity in the environment with any sensor event. The activity recognition samples were labeled by the statistical features such as the duration of activity. The results of our proposed method test on two different datasets of smart homes in the real world showed that one dataset has improved 4% and reached (59%) while the results reached 64.6% for the other data by using the best methods

    Optimal Local and Remote Controllers with Unreliable Communication

    Full text link
    We consider a decentralized optimal control problem for a linear plant controlled by two controllers, a local controller and a remote controller. The local controller directly observes the state of the plant and can inform the remote controller of the plant state through a packet-drop channel. We assume that the remote controller is able to send acknowledgments to the local controller to signal the successful receipt of transmitted packets. The objective of the two controllers is to cooperatively minimize a quadratic performance cost. We provide a dynamic program for this decentralized control problem using the common information approach. Although our problem is not a partially nested LQG problem, we obtain explicit optimal strategies for the two controllers. In the optimal strategies, both controllers compute a common estimate of the plant state based on the common information. The remote controller's action is linear in the common estimated state, and the local controller's action is linear in both the actual state and the common estimated state

    Model Predictive BESS Control for Demand Charge Management and PV-Utilization Improvement

    Full text link
    Adoption of battery energy storage systems for behind-the-meters application offers valuable benefits for demand charge management as well as increasing PV-utilization. The key point is that while the benefit/cost ratio for a single application may not be favorable for economic benefits of storage systems, stacked services can provide multiple revenue streams for the same investment. Under this framework, we propose a model predictive controller to reduce demand charge cost and enhance PV-utilization level simultaneously. Different load patterns have been considered in this study and results are compared to the conventional rule-based controller. The results verified that the proposed controller provides satisfactory performance by improving the PV-utilization rate between 60% to 80% without significant changes in demand charge (DC) saving. Furthermore, our results suggest that batteries can be used for stacking multiple services to improve their benefits. Quantitative analysis for PV-utilization as a function of battery size and prediction time window has also been carried out.Comment: Accepted in: Conference on Innovative Smart Grid Technology (ISGT), Washington, DC, 201
    • …
    corecore