79 research outputs found

    Maternal and neonatal immune response to SARS-CoV-2, IgG transplacental transfer and cytokine profile

    Full text link
    SARS-CoV-2 infected pregnant women are at increased risk of severe COVID-19 than non-pregnant women and have a higher risk of adverse pregnancy outcomes like intrauterine/fetal distress and preterm birth. However, little is known about the impact of SARS-CoV-2 infection on maternal and neonatal immunological profiles. In this study, we investigated the inflammatory and humoral responses to SARS-CoV-2 in maternal and cord blood paired samples. Thirty-six pregnant women were recruited at delivery at Hospital Sant Joan de Déu, Barcelona, Spain, between April-August 2020, before having COVID-19 available vaccines. Maternal and pregnancy variables, as well as perinatal outcomes, were recorded in questionnaires. Nasopharyngeal swabs and maternal and cord blood samples were collected for SARS-CoV-2 detection by rRT-PCR and serology, respectively. We measured IgM, IgG and IgA levels to 6 SARS-CoV-2 antigens (spike [S], S1, S2, receptor-binding domain [RBD], nucleocapsid [N] full-length and C-terminus), IgG to N from 4 human coronaviruses (OC43, HKU1, 229E and NL63), and the concentrations of 30 cytokines, chemokines and growth factors by Luminex. Mothers were classified as infected or non-infected based on the rRT-PCR and serology results. Sixty-four % of pregnant women were infected with SARS-CoV-2 (positive by rRT-PCR during the third trimester and/or serology just after delivery). None of the newborns tested positive for rRT-PCR. SARS-CoV-2 infected mothers had increased levels of virus-specific antibodies and several cytokines. Those with symptoms had higher cytokine levels. IFN-? was increased in cord blood from infected mothers, and in cord blood of symptomatic mothers, EGF, FGF, IL-17 and IL-15 were increased, whereas RANTES was decreased. Maternal IgG and cytokine levels showed positive correlations with their counterparts in cord blood. rRT-PCR positive mothers showed lower transfer of SARS-CoV-2-specific IgGs, with a stronger effect when infection was closer to delivery. SARS-CoV-2 infected mothers carrying a male fetus had higher antibody levels and higher EGF, IL-15 and IL-7 concentrations. Our results show that SARS-CoV-2 infection during the third trimester of pregnancy induces a robust antibody and cytokine response at delivery and causes a significant reduction of the SARS-CoV-2-specific IgGs transplacental transfer, with a stronger negative effect when the infection is closer to delivery.Copyright © 2022 Rubio, Aguilar, Bustamante, Muñoz, Våzquez-Santiago, Santano, Vidal, Melero, Parras, Serra, Santamaria, Carolis, Izquierdo, Gómez-Roig, Dobaño, Moncunill and Mazarico

    Impaired Mitophagy and Protein Acetylation Levels in Fibroblasts from Parkinson's Disease Patients

    Get PDF
    Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. While most PD cases are idiopathic, the known genetic causes of PD are useful to understand common disease mechanisms. Recent data suggests that autophagy is regulated by protein acetylation mediated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities. The changes in histone acetylation reported to be involved in PD pathogenesis have prompted this investigation of protein acetylation and HAT and HDAC activities in both idiopathic PD and G2019S leucine-rich repeat kinase 2 (LRRK2) cell cultures. Fibroblasts from PD patients (with or without the G2019S LRRK2 mutation) and control subjects were used to assess the different phenotypes between idiopathic and genetic PD. G2019S LRRK2 mutation displays increased mitophagy due to the activation of class III HDACs whereas idiopathic PD exhibits downregulation of clearance of defective mitochondria. This reduction of mitophagy is accompanied by more reactive oxygen species (ROS). In parallel, the acetylation protein levels of idiopathic and genetic individuals are different due to an upregulation in class I and II HDACs. Despite this upregulation, the total HDAC activity is decreased in idiopathic PD and the total HAT activity does not significantly vary. Mitophagy upregulation is beneficial for reducing the ROS-induced harm in genetic PD. The defective mitophagy in idiopathic PD is inherent to the decrease in class III HDACs. Thus, there is an imbalance between total HATs and HDACs activities in idiopathic PD, which increases cell death. The inhibition of HATs in idiopathic PD cells displays a cytoprotective effect

    Activation of the Integrated Stress Response and ER Stress Protect from Fluorizoline-Induced Apoptosis in HEK293T and U2OS Cell Lines

    Get PDF
    The prohibitin (PHB)-binding compound fluorizoline as well as PHB-downregulation activate the integrated stress response (ISR) in HEK293T and U2OS human cell lines. This activation is denoted by phosphorylation of eIF2 alpha and increases in ATF4, ATF3, and CHOP protein levels. The blockage of the activation of the ISR by overexpression of GRP78, as well as an increase in IRE1 activity, indicate the presence of ER stress after fluorizoline treatment. The inhibition of the ER stress response in HEK293T and U2OS led to increased sensitivity to fluorizoline-induced apoptosis, indicating a pro-survival role of this pathway after fluorizoline treatment in these cell lines. Fluorizoline induced an increase in calcium concentration in the cytosol and the mitochondria. Finally, two different calcium chelators reduced fluorizoline-induced apoptosis in U2OS cells. Thus, we have found that fluorizoline causes increased ER stress and activation of the integrated stress response, which in HEK293T and U2OS cells are protective against fluorizoline-induced apoptosis

    Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression.

    Get PDF
    Mutations of the PTEN-induced kinase 1 (PINK1) gene are a cause of autosomal recessive Parkinson's disease (PD). This gene encodes a mitochondrial serine/threonine kinase, which is partly localized to mitochondria, and has been shown to play a role in protecting neuronal cells from oxidative stress and cell death, perhaps related to its role in mitochondrial dynamics and mitophagy. In this study, we report that increased mitochondrial PINK1 levels observed in human neuroblastoma SH-SY5Y cells after carbonyl cyanide m-chlorophelyhydrazone (CCCP) treatment were due to de novo protein synthesis, and not just increased stabilization of full length PINK1 (FL-PINK1). PINK1 mRNA levels were significantly increased by 4-fold after 24h. FL-PINK1 protein levels at this time point were significantly higher than vehicle-treated, or cells treated with CCCP for 3h, despite mitochondrial content being decreased by 29%. We have also shown that CCCP dissipated the mitochondrial membrane potential (Δψm) and induced entry of extracellular calcium through L/N-type calcium channels. The calcium chelating agent BAPTA-AM impaired the CCCP-induced PINK1 mRNA and protein expression. Furthermore, CCCP treatment activated the transcription factor c-Fos in a calcium-dependent manner. These data indicate that PINK1 expression is significantly increased upon CCCP-induced mitophagy in a calcium-dependent manner. This increase in expression continues after peak Parkin mitochondrial translocation, suggesting a role for PINK1 in mitophagy that is downstream of ubiquitination of mitochondrial substrates. This sensitivity to intracellular calcium levels supports the hypothesis that PINK1 may also play a role in cellular calcium homeostasis and neuroprotection

    Carriers for the Targeted Delivery of Aerosolized Macromolecules for Pulmonary Pathologies.

    Get PDF
    INTRODUCTION: Macromolecules with unique effects and potency are increasingly being considered for application in lung pathologies. Numerous delivery strategies for these macromolecules through the lung, have been investigated to improve the targeting and overall efficacy. Areas covered: Targeting approaches from delivery devices, formulation strategies and specific targets are discussed. Expert opinion: Although macromolecules are a heterogeneous group of molecules, a number of strategies have been investigated at the macro, micro and nanoscopic scale for the delivery of macromolecules to specific sites and cells of lung tissues. Targeted approaches are already in use at the macroscopic scale through inhalation devices and formulations, but targeting strategies at the micro and nanoscopic scale are still in the laboratory stage. The combination of controlling lung deposition and targeting after deposition, through a combination of targeting strategies could be the future direction for the treatment of lung pathologies through the pulmonary route

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    RTS,S/AS01E immunization increases antibody responses to vaccine-unrelated Plasmodium falciparum antigens associated with protection against clinical malaria in African children:a case-control study

    Get PDF
    BACKGROUND: Vaccination and naturally acquired immunity against microbial pathogens may have complex interactions that influence disease outcomes. To date, only vaccine-specific immune responses have routinely been investigated in malaria vaccine trials conducted in endemic areas. We hypothesized that RTS,S/A01E immunization affects acquisition of antibodies to Plasmodium falciparum antigens not included in the vaccine and that such responses have an impact on overall malaria protective immunity. METHODS: We evaluated IgM and IgG responses to 38 P. falciparum proteins putatively involved in naturally acquired immunity to malaria in 195 young children participating in a case-control study nested within the African phase 3 clinical trial of RTS,S/AS01E (MAL055 NCT00866619) in two sites of different transmission intensity (Kintampo high and Manhiça moderate/low). We measured antibody levels by quantitative suspension array technology and applied regression models, multimarker analysis, and machine learning techniques to analyze factors affecting their levels and correlates of protection. RESULTS: RTS,S/AS01E immunization decreased antibody responses to parasite antigens considered as markers of exposure (MSP142, AMA1) and levels correlated with risk of clinical malaria over 1-year follow-up. In addition, we show for the first time that RTS,S vaccination increased IgG levels to a specific group of pre-erythrocytic and blood-stage antigens (MSP5, MSP1 block 2, RH4.2, EBA140, and SSP2/TRAP) which levels correlated with protection against clinical malaria (odds ratio [95% confidence interval] 0.53 [0.3-0.93], p = 0.03, for MSP1; 0.52 [0.26-0.98], p = 0.05, for SSP2) in multivariable logistic regression analyses. CONCLUSIONS: Increased antibody responses to specific P. falciparum antigens in subjects immunized with this partially efficacious vaccine upon natural infection may contribute to overall protective immunity against malaria. Inclusion of such antigens in multivalent constructs could result in more efficacious second-generation multistage vaccines
    • 

    corecore