63 research outputs found

    Site-Specific, Critical Threshold Barefoot Peak Plantar Pressure Associated with Diabetic Foot Ulcer History: A Novel Approach to Determine DFU Risk in the Clinical Setting

    Get PDF
    Background and Objectives: Barefoot peak plantar pressures (PPPs) are elevated in diabetes patients with neuropathic foot ulcer (DFU) history; however, there is limited reported evidence for a causative link between high barefoot PPP and DFU risk. We aimed to determine, using a simple mat-based methodology, the site-specific, barefoot PPP critical threshold that will identify a plantar site with a previous DFU. Materials and Methods: In a cross-sectional study, barefoot, site-specific PPPs were measured with normal gait for patients with DFU history (n = 21) and healthy controls (n = 12), using a validated carbon footprint system. For each participant, PPP was recorded at twelve distinct plantar sites (1st–5th toes, 1st–5th metatarsal heads (MTHs), midfoot and heel), per right and left foot, resulting in the analysis of n = 504 distinct plantar sites in the diabetes group, and n = 288 sites in the control group. Receiver operator characteristic curve analysis determined the optimal critical threshold for sites with DFU history. Results: Median PPPs for the groups were: diabetes sites with DFU history (n = 32) = 5.0 (3.25–7.5) kg/cm2, diabetes sites without DFU history (n = 472) = 3.25 (2.0–5.0) kg/cm2, control sites (n = 288) = 2.0 (2.0–3.25) kg/cm2; (p 6 kg/cm2) were six times more likely to have had DFU than diabetes sites with PPP ≤ 6 kg/cm2 (OR = 6.4 (2.8–14.6, 95% CI), p 4.1 kg/cm2 was determined as the optimal critical threshold for identifying DFU at a specific plantar site, with sensitivity/specificity = 100%/79% at midfoot; 80%/65% at 5th metatarsal head; 73%/62% at combined midfoot/metatarsal head areas. Conclusions: We have demonstrated, for the first time, a strong, site-specific relationship between elevated barefoot PPP and previous DFU. We have determined a critical, highly-sensitive, barefoot PPP threshold value of >4.1 kg/cm2, which may be easily used to identify sites of previous DFU occurrence and, therefore, increased risk of re-ulceration. This site-specific approach may have implications for how high PPPs should be investigated in future trials

    Challenges in diabetes mellitus type 2 management in Nepal: a literature review

    Get PDF
    BACKGROUND AND OBJECTIVES: Diabetes has become an increasingly prevalent and severe public health problem in Nepal. The Nepalese health system is struggling to deliver comprehensive, quality treatment and services for diabetes at all levels of health care. This study aims to review evidence on the prevalence, cost and treatment of diabetes mellitus type 2 and its complications in Nepal and to critically assess the challenges to be addressed to contain the epidemic and its negative economic impact. DESIGN: A comprehensive review of available evidence and data sources on prevalence, risk factors, cost, complications, treatment, and management of diabetes mellitus type 2 in Nepal was conducted through an online database search for articles published in English between January 2000 and November 2015. Additionally, we performed a manual search of articles and reference lists of published articles for additional references. RESULTS: Diabetes mellitus type 2 is emerging as a major health care problem in Nepal, with rising prevalence and its complications especially in urban populations. Several challenges in diabetes management were identified, including high cost of treatment, limited health care facilities, and lack of disease awareness among patients. No specific guideline was identified for the prevention and treatment of diabetes in Nepal. CONCLUSIONS: We conclude that a comprehensive national effort is needed to stem the tide of the growing burden of diabetes mellitus type 2 and its complications in Nepal. The government should develop a comprehensive plan to tackle diabetes and other non-communicable diseases supported by appropriate health infrastructure and funding

    A sleeping phantom leg awakened following hemicolectomy, thrombosis, and chemotherapy: a case report

    Get PDF
    INTRODUCTION: We describe the case of a patient who experienced phantom pain that began 42 years after right above-the-knee amputation. Immediately prior to phantom pain onset, this long-term amputee had experienced, in rapid succession, cancer, hemicolectomy, chemotherapy, and thrombotic occlusion. Very little has been published to date on the association between chemotherapy and exacerbation of neuropathic pain in amputees, let alone the phenomenon of bringing about pain in amputees who have been pain-free for many decades. While this patient presented with a unique profile following a rare sequence of medical events, his case should be recognized considering the frequent co-occurrence of osteomyelitis, chemotherapy, and amputation. CASE PRESENTATION: A 68-year-old Australian Caucasian man presented 42 years after right above-the-knee amputation with phantom pain immediately following hemicolectomy, thrombotic occlusion in the amputated leg, and chemotherapy treatment with leucovorin and 5-fluorouracil. He exhibited probable hyperalgesia with a reduced pinprick threshold and increased stump sensitivity, indicating likely peripheral and central sensitization. CONCLUSION: Our patient, who had long-term nerve injury due to amputation, together with recent ischemic nerve and tissue injury due to thrombosis, exhibited likely chemotherapy-induced neuropathy. While he presented with unique treatment needs, cases such as this one may actually be quite common considering that osteosarcoma can frequently lead to amputation and be followed by chemotherapy. The increased susceptibility of amputees to developing potentially intractable chemotherapy-induced neuropathic pain should be taken into consideration throughout the course of chemotherapy treatment. Patients in whom chronic phantom pain then develops, perhaps together with mobility issues, inevitably place greater demands on healthcare service providers that require treatment by various clinical specialists, including oncologists, neurologists, prosthetists, and, most frequently, general practitioners

    What the radiologist needs to know about the diabetic patient

    Get PDF
    Diabetes mellitus (DM) is recognised as a major health problem. Ninety-nine percent of diabetics suffer from type 2 DM and 10% from type 1 and other types of DM. The number of diabetic patients worldwide is expected to reach 380 millions over the next 15 years. The duration of diabetes is an important factor in the pathogenesis of complications, but other factors frequently coexisting with type 2 DM, such as hypertension, obesity and dyslipidaemia, also contribute to the development of diabetic angiopathy. Microvascular complications include retinopathy, nephropathy and neuropathy. Macroangiopathy mainly affects coronary arteries, carotid arteries and arteries of the lower extremities. Eighty percent of deaths in the diabetic population result from cardiovascular incidents. DM is considered an equivalent of coronary heart disease (CHD). Stroke and peripheral artery disease (PAD) are other main manifestations of diabetic macroangiopathy. Diabetic cardiomyopathy (DC) represents another chronic complication that occurs independently of CHD and hypertension. The greater susceptibility of diabetic patients to infections completes the spectrum of the main consequences of DM. The serious complications of DM make it essential for physicians to be aware of the screening guidelines, allowing for earlier patient diagnosis and treatment

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
    corecore