70 research outputs found

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Observation of Z production in proton-lead collisions at LHCb

    Get PDF
    The first observation of Z boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of root(s) N N = 5TeV is presented. The data sample corresponds to an integrated luminosity of 1.6 nb(-1) collected with the LHCb detector. The Z candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above 20 GeV/c. The invariant dimuon mass is restricted to the range 60-120 GeV/c. The Z production cross-section is measured to be sigma(Z ->mu+mu-) (fwd) = 13.5(-4.0)(+5.4)(stat.) +/- 1.2(syst.) nb in the direction of the proton beam and sigma(Z ->mu+mu-) (bwd) = 10.7(-5.1)(+8.4)(stat.) +/- 1.0(syst.) nb in the direction of the lead beam, where the first uncertainty is statistical and the second systematic

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article

    Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC

    Get PDF
    The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at √s=13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb −1 for the tt ¯ and γ+jet and 36.7 fb −1 −1 for the dijet event topologies

    In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

    Get PDF
    The response of the ATLAS detector to largeradius jets is measured in situ using 36.2 fb−1 of √s = 13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transversemomentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (pT). The precision of the relative jet energy scale is 1–2% for 200 GeV < pT < 2 TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same pT range

    Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at s √ =8  TeV with the ATLAS detector

    Get PDF
    Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-pT leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3  fb−1 from pp collisions at a center-of-mass energy s√=8  TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the ttÂŻ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: AℓℓC based on the selected leptons and AttÂŻC based on the reconstructed ttÂŻ final state. The inclusive asymmetries are measured in the full phase space to be AℓℓC=0.008±0.006 and AttÂŻC=0.021±0.016, which are in agreement with the Standard Model predictions of AℓℓC=0.0064±0.0003 and AttÂŻC=0.0111±0.0004

    Evidence for electroweak production of W±W±jj in pp collisions at s√=8  TeV with the ATLAS detector

    Get PDF
    This Letter presents the first study of W±W±jj, same-electric-charge diboson production in association with two jets, using 20.3  fb−1 of proton-proton collision data at s√=8  TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two reconstructed same-charge leptons (e±e±, e±Ό±, and Ό±Ό±) and two or more jets are analyzed. Production cross sections are measured in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. First evidence for W±W±jj production and electroweak-only W±W±jj production is observed with a significance of 4.5 and 3.6 standard deviations, respectively. The measured production cross sections are in agreement with standard model predictions. Limits at 95% confidence level are set on anomalous quartic gauge couplings

    Measurement of the Bs0→J/ψK∗0B^0_s\rightarrow J/\psi K^{*0} branching fraction and angular amplitudes

    Get PDF
    A search for the decay Bs0→J/ψK∗0B^0_s\rightarrow J/\psi K^{*0} with K∗0→K−π+K^{*0} \rightarrow K^-\pi^+ is performed with 0.37 fb−1^{-1} of pppp collisions at s\sqrt{s} = 7 TeV collected by the LHCb experiment, finding a \Bs \to J\psi K^-\pi^+ peak of 114±11114 \pm 11 signal events. The K−π+K^-\pi^+ mass spectrum of the candidates in the Bs0B^0_s peak is dominated by the K∗0K^{*0} contribution. Subtracting the non-resonant K−π+K^-\pi^+ component, the branching fraction of \BsJpsiKst is (4.4−0.4+0.5±0.8)×10−5(4.4_{-0.4}^{+0.5} \pm 0.8) \times 10^{-5}, where the first uncertainty is statistical and the second systematic. A fit to the angular distribution of the decay products yields the \Kst polarization fractions fL=0.50±0.08±0.02f_L = 0.50 \pm 0.08 \pm 0.02 and f∣∣=0.19−0.08+0.10±0.02f_{||} = 0.19^{+0.10}_{-0.08} \pm 0.02

    Measurement of Upsilon production in pp collisions at \sqrt{s} = 7 TeV

    Get PDF
    The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -> mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT < 15 GeV/c and 2.0 < y < 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -> Upsilon(1S) X) x B(Upsilon(1S)->mu+ mu-) = 2.29 {\pm} 0.01 {\pm} 0.10 -0.37 +0.19 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S)->mu+ mu-) = 0.562 {\pm} 0.007 {\pm} 0.023 -0.092 +0.048 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S)->mu+ mu-) = 0.283 {\pm} 0.005 {\pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.Comment: 22 pages, 7 figure

    Measurement of jet charge in dijet events from √s = 8  TeV pp collisions with the ATLAS detector

    Get PDF
    The momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb−Âč of data recorded with the ATLAS detector at √s = 8 TeV in pp collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The pT dependence of the jet charge distribution average and standard deviation are compared to predictions obtained with several leading-order and next-to-leading-order parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a pT dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases
    • 

    corecore