48 research outputs found

    Correction to “Using altimetry to help explain patchy changes in hydrographic carbon measurements”

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12099, doi:10.1029/2009JC005835

    An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 607-627, doi:10.5194/bg-10-607-2013.The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea–air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea–air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea–air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is −0.49 ± 0.05 Pg C yr−1, and by the Arctic it is −0.12 ± 0.06 Pg C yr−1, leading to a combined sea–air flux of −0.61 ± 0.06 Pg C yr−1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.U. Schuster has been supported by EU grants IP 511176-2 (CARBOOCEAN), 212196 (COCOS), and 264879 (CARBOCHANGE), and UK NERC grant NE/H017046/1 (UKOARP). G. A. McKinley and A. Fay thank NASA for support (NNX08AR68G, NNX11AF53G). P. Landsch¨utzer has been supported by EU grant 238366 (GREENCYCLESII). N. Metzl acknowledges the French national funding program LEFE/INSU. Support for N. Gruber has been provided by EU grants 264879 (CARBOCHANGE) and 283080 (GEO-CARBON) S. Doney acknowledges support from NOAA (NOAA-NA07OAR4310098). T. Takahashi is supported by NOAA (NAO80AR4320754)

    Observation of top quark pairs produced in association with a vector boson in pp collisions at s=8 √s=8TeV

    Get PDF
    Measurements of the cross sections for top quark pairs produced in association with a W or Z boson are presented, using 8 TeV pp collision data corresponding to an integrated luminosity of 19.5 fb −1 , collected by the CMS experiment at the LHC. Final states are selected in which the associated W boson decays to a charged lepton and a neutrino or the Z boson decays to two charged leptons. Signal events are identified by matching reconstructed objects in the detector to specific final state particles from t t ¯ W tt¯W or t t ¯ Z tt¯Z decays. The t t ¯ W tt¯W cross section is measured to be 382 − 102 + 117 fb with a significance of 4.8 standard deviations from the background-only hypothesis. The t t ¯ Z tt¯Z cross section is measured to be 242 − 55 + 65 fb with a significance of 6.4 standard deviations from the background-only hypothesis. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the t t ¯ W tt¯W and t t ¯ Z tt¯Z cross sections

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Event shapes and azimuthal correlations in Z plus jets events in pp collisions at root s=7TeV^{√s=7 TeV}

    Get PDF
    is produced in association with jets in proton–proton collisions. The data collected with the CMS detector at the CERN LHC at s=7TeV^{√s=7 TeV} correspond to an integrated luminosity of 5.0 fb1^{-1}. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z+1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD model

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Temporal variability of atmospheric CO2 of the Spanish Atlantic Coast

    No full text
    The variability of the molar fraction of atmospheric CO2 (xCO(2)(a)) and wind speed and direction were investigated in a coastal embayment located in the west European coast, ria de Vigo, NW Spain, along daily and seasonal time scales. Observations in the ria showed that xCO(2)(a) on a short time scale presented a much wider variability than seawater molar fraction (xCO(2)(w)), in addition, a significant covariation between xCO(2)(a) and wind was found. A sluggish atmospheric renewal due to weak winds was associated with high values of xCO(2)(a), whereas higher oceanic winds renovate the air column with more stable and constrained xCO(2)(a) values (from 350 to 370 ppm). The impact of anomalously high xCO(2)(a) on CO2 air-sea fluxes is practically not significant, due to the kinetic control exerted by wind speed by means of the gas exchange coefficient. A seasonal cycle for the atmospheric molar fraction of CO2 in the Southwest European Coast was obtained. Using this approach for xCO(2)(a) in calculating the air-sea CO2 fluxes avoids under/overestimations of the fluxes on particular short periods of time, whilst using a mean xCO(2)(a) seasonal value for longer time scales has no significant effect on the final net magnitude of the air-sea flux.La variabilité de la fraction molaire du CO2 atmosphérique (xCO2a), la vitesse et direction du vent ont été étudiés sur une baie côtière de la côte ouest de l’Europe, la ría de Vigo, au nord-ouest de l’Espagne, de l’échelle journalière à celle de la saison. Des observations dans la ría ont montré que la xCO2a, à courte échelle de temps, présentait une variabilité plus grande que la fraction molaire de l’eau de mer (xCO2w). Une corrélation significative a été trouvée entre la xCO2a et le vent. Une lente rénovation atmosphérique, due aux faibles vents, est associée aux hautes valeurs de la xCO2a, tandis que les vents océaniques les plus forts renouvellent la colonne d’air avec une xCO2w plus stable et dans une gamme plus étroite (de 350 à 370 ppm). L’impact d’une xCO2w anormalement élevée sur les flux air–mer n’est pas significatif, en raison du contrôle cinétique exercé par la vitesse du vent, par le lien du coefficient d’échange air–mer. Un cycle saisonnier pour la fraction molaire atmopshérique de CO2 est mis en évidence. En utilisant cette approximation pour la xCO2a, on pourra calculer les flux air–mer en évitant les sous-estimations et les sur-estimations des flux pour les courtes périodes de temps. En utilisant une valeur moyenne saisonnière de la xCO2a pour des échelles de temps longues, on ne rencontrera pas d'effet significatif sur la grandeur nette finale du flux air–mer

    OVIDE 2004. CO2 variables Report

    No full text
    The carbon system is defined by four variables: pH, Total Alkalinity (AT), partial pressure of carbon dioxide (pCO2) and Total Inorganic Carbon (CT). The knowledge of two of these variables allows the calculation of the other two by means of a set of equations deduced from thermodynamic equilibrium. During the OVIDE 2004 cruise carried out between 5th June and 6th July on board the RN THALASSA pH and TA measurements were sampled fiom bottle depths at selected stations (Table 1) and analysed on board. Moreover, pCOz has been continuously detennined in surface waters along the vesse1 track. In this cruise, unlike OVIDE 2002, samples for CT were also taken, but will be analyzed at lab. CT is also calculated from pH and AT. In this report we resume the activities, methods and results obtained during the OVIDE 2004 cruise. Besides, at the end of the report, two more reports from A. Dickson (Scripps) and from Fiz F. Pérez are included. During the cruise 80 samples for intercalibration were collected and sent to A. Dickson. In the Dickson's report, very important deviations were detected from the measured obtained on board and those obtained in the Dickson's lab one year later. Fiz F. Pérez showed that these important and very significant differences were not due to the analytical work made on board. We are including here the last email form A. Dickson because it is very conclusive.L'objet de l'étude était la réalisation et l'analyse de mesures de pH et d'alcalinité lors de la mission Ovide 2004 en une centaine de station réparties entre le Groenland et le Portugal. Ces mesures donnent des indications sur le cycle du carbone dans l'océan et permettent en particulier d'estimer la contribution du carbone d'origine anthropique. Le carbone d'origine anthropique est pour partie stocké dans les océans, il est donc crucial d'en faire l'inventaire et de déterminer son devenir

    Structure, transports and transformations of the water masses in the Atlantic Subpolar Gyre

    Get PDF
    We discuss the distributions and transports of the main water masses in the North Atlantic Subpolar Gyre (NASPG) for the mean of the period 2002–2010 (OVIDE sections 2002–2010 every other year), as well as the inter-annual variability of the water mass structure from 1997 (4x and METEOR sections) to 2010. The water mass structure of the NASPG, quantitatively assessed by means of an Optimum MultiParameter analysis (with 14 water masses), was combined with the velocity fields resulting from previous studies using inverse models to obtain the water mass volume transports. We also evaluate the relative contribution to the Atlantic Meridional Overturning Circulation (AMOC) of the main water masses characterizing the NASPG, identifying the water masses that contribute to the AMOC variability. The reduction of the magnitude of the upper limb of the AMOC between 1997 and the 2000s is associated with the reduction in the northward transport of the Central Waters. This reduction of the northward flow of the AMOC is partially compensated by the reduction of the southward flow of the lower limb of the AMOC, associated with the decrease in the transports of Polar Intermediate Water and Subpolar Mode Water (SPMW) in the Irminger Basin. We also decompose the flow over the Reykjanes Ridge from the East North Atlantic Basin to the Irminger Basin (9.4 ± 4.7 Sv) into the contributions of the Central Waters (2.1 ± 1.8 Sv), Labrador Sea Water (LSW, 2.4 ± 2.0 Sv), Subarctic Intermediate Water (SAIW, 4.0 ± 0.5 Sv) and Iceland–Scotland Overflow Water (ISOW, 0.9 ± 0.9 Sv). Once LSW and ISOW cross over the Reykjanes Ridge, favoured by the strong mixing around it, they leave the Irminger Basin through the deep-to-bottom levels. The results also give insights into the water mass transformations within the NASPG, such as the contribution of the Central Waters and SAIW to the formation of the different varieties of SPMW due to air–sea interaction

    The water masses along the western boundary of the south and equatorial Atlantic.

    No full text
    International audienceA quasi-meridional hydrographic section located offshore from South America from 50°S to 10°N, and three shorter transverse lines to the continental slope, are used for a descriptive study of the water masses along the western boundary of the South and Equatorial Atlantic. At the upper and intermediate levels, the tracer analysis provides geographical limits of the wind-driven circulation regimes, and a comparison of the tracer values at the continental slope and along the meridional section shows where the boundary currents originate. At depths shallower than about 200 m, the subdivision of the subtropical gyre into two cells separated by the Subtropical Countercurrent near 28°S, that was pointed out in a previous study, is corroborated. South of this front, a warm variety (not, vert, similar18°C) of Subtropical Mode Water in the inner recirculation of the Brazil Current appears, despite its limited extent, as a southern counterpart of the North Atlantic 18°C water. At the deep levels, the Upper Circumpolar Water and Upper North Atlantic Deep Water enter the South Atlantic in a significantly overlapping density range. The ensuing lateral encounter of both water masses occurs at 26°S near the western boundary, where most of the boundary flow of the latter water is stopped and deflected seaward by the base of the subtropical gyre. Other tracer anomalies signal significant eastward escapes of North Atlantic Deep Water: within two jets at about two degrees of latitude on either side of the equator, in another narrow current at 10°S, and at 34°S. The latter latitude marks the confluence, and eastward deflection, of the opposite boundary currents of Lower North Atlantic Deep Water and Lower Circumpolar Water. Near the bottom of the Argentine Basin, the Weddell Sea Deep Water that flows westward north of the Zapiola Ridge is more recently ventilated than the water carried by the boundary current near the Falkland Escarpment. While a part of it flows anticyclonically around the ridge, another part turns equatorward and enhances the southern property signatures of the water farther north
    corecore