17 research outputs found
Seychelles Lagoon Provides Corals with a Refuge from Bleaching
An extensive bleaching event in the summer of the year 1997-1998 affected most reefs along East Africa's shores. In the aftermath of that episode, the reefs of Île Alphonse in the Seychelles were examined and it was found that reefs along the seaward slopes of the island lost >95% of their branching coral colonies, with considerably higher survival of massive species. Île Alphonse features a nearly circular shallow lagoon, with steep seaward slopes. Contrary to our expectations, mortality in the warmer lagoon was far lower than of coral colonies on the surrounding slopes, bathed in deeper and cooler waters. We suggest that corals in the lagoon were protected from UV radiation by leachate stemming from seagrass leaves steeped in the lagoon. Our measurements in the lagoon showed a strong attenuation of ultraviolet radiation, not observed in the waters outside the lagoon, and laboratory examination confirmed that the strong UV absorption of substances leached into seawater from decomposing leaves of the seagrass Thalassodendron (=Cymodocea) testudinaceum. Our findings demonstrate the synergism between elevated seawater temperature and UV radiation in triggering bleaching on shallow reefs
Adenovirus RID-α activates an autonomous cholesterol regulatory mechanism that rescues defects linked to Niemann-Pick disease type C
Viral subversion of cholesterol homeostasis provides insights into sterol trafficking, autophagy, and lysosomal storage diseases
Longitudinal Imaging of the Ageing Mouse
Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging