5,625 research outputs found

    Quantum correlation of light scattered by disordered media

    Get PDF
    We study theoretically how multiple scattering of light in a disordered medium can spontaneously generate quantum correlations. In particular we focus on the case where the input state is Gaussian and characterize the correlations between two arbitrary output modes. As there is not a single all-inclusive measure of correlation, we characterise the output correlations with three measures: intensity fluctuations, entanglement, and quantum discord. We found that, while a single mode coherent state input can not produce quantum correlations, any other Gaussian input will produce them in one form or another. This includes input states that are usually regarded as more classical than coherent ones, such as thermal states, which will produce a non zero quantum discord

    Superpixel-based spatial amplitude and phase modulation using a digital micromirror device

    Get PDF
    We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F=0.98F=0.98 for a target field with fully independent phase and amplitude at a resolution of 8×88\times 8 pixels per diffraction limited spot. For the LG10_{10} orbital angular momentum mode the calculated fidelity is F=0.99993F=0.99993, using 768×768768\times 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50%50\% and 18%18\%, with a comparable light efficiency of around 5%5\%. Our control software is publicly available.Comment: 9 pages, 6 figure

    Management of the orbital angular momentum of vortex beams in a quadratic nonlinear interaction

    Full text link
    Light intensity control of the orbital angular momentum of the fundamental beam in a quadratic nonlinear process is theoretically and numerically presented. In particular we analyzed a seeded second harmonic generation process in presence of orbital angular momentum of the interacting beams due both to on axis and off axis optical vortices. Examples are proposed and discussed

    Random nonlinear layered structures as sources of photon pairs for quantum-information processing

    Full text link
    Random nonlinear layered structures have been found to be a useful source of photon pairs with perfectly indistinguishable un-entangled photons emitted into a very narrow spectral range. Localization of the interacting optical fields typical for random structures gives relatively high photon-pair fluxes. Superposing photon-pair emission quantum paths at different emission angles, several kinds of two-photon states (including states with coincident frequencies) useful in quantum-information processing can easily be generated.Comment: 4 pages, 5 figure

    Influence of pump-field scattering to nonclassical-light generation in a photonic band-gap nonlinear planar waveguide

    Full text link
    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. Properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic band-gap structure inside the waveguide. A quantum model of linear operator amplitude corrections to amplitude mean-values provides conditions for an efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. Destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band gap structure inside the waveguide. Also an increase of signal-to-noise ratio of an incident optical field can be reached in the waveguide.Comment: 10 pages, 12 figure

    Conceptos básicos comunicación digital

    Get PDF
    Comuniación Digital, conceptos básico

    Coherence effects in propagation through photonic crystals

    Get PDF
    We have analytically studied how a partially coherent quasi plane wave is affected by a photonic crystal structure including a grating. The analysis is presented for spatial and temporal cases showing the possibility to determine the coherence characteristics of the pulse.

    Transient superdiffusion in correlated diffusive media

    Get PDF
    This is the author accepted manuscript.Diffusion processes are studied theoretically for the case where the diffusion coefficient is itself a time and position dependent random function. We investigate how inhomogeneities and fluctuations of the diffusion coefficient affect the transport using a perturbative approach, with a special attention to the time scaling of the second moment. We show that correlated disorder can lead to anomalous transport and superdiffusion
    • …
    corecore