524 research outputs found

    Bayesian multi-modal model comparison: a case study on the generators of the spike and the wave in generalized spike–wave complexes

    Get PDF
    We present a novel approach to assess the networks involved in the generation of spontaneous pathological brain activity based on multi-modal imaging data. We propose to use probabilistic fMRI-constrained EEG source reconstruction as a complement to EEG-correlated fMRI analysis to disambiguate between networks that co-occur at the fMRI time resolution. The method is based on Bayesian model comparison, where the different models correspond to different combinations of fMRI-activated (or deactivated) cortical clusters. By computing the model evidence (or marginal likelihood) of each and every candidate source space partition, we can infer the most probable set of fMRI regions that has generated a given EEG scalp data window. We illustrate the method using EEG-correlated fMRI data acquired in a patient with ictal generalized spike–wave (GSW) discharges, to examine whether different networks are involved in the generation of the spike and the wave components, respectively. To this effect, we compared a family of 128 EEG source models, based on the combinations of seven regions haemodynamically involved (deactivated) during a prolonged ictal GSW discharge, namely: bilateral precuneus, bilateral medial frontal gyrus, bilateral middle temporal gyrus, and right cuneus. Bayesian model comparison has revealed the most likely model associated with the spike component to consist of a prefrontal region and bilateral temporal–parietal regions and the most likely model associated with the wave component to comprise the same temporal–parietal regions only. The result supports the hypothesis of different neurophysiological mechanisms underlying the generation of the spike versus wave components of GSW discharges

    Action and behavior: a free-energy formulation

    Get PDF
    We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz’s agenda to understand the brain in terms of energy minimization. It is fairly easy to show that making inferences about the causes of sensory data can be cast as the minimization of a free-energy bound on the likelihood of sensory inputs, given an internal model of how they were caused. In this article, we consider what would happen if the data themselves were sampled to minimize this bound. It transpires that the ensuing active sampling or inference is mandated by ergodic arguments based on the very existence of adaptive agents. Furthermore, it accounts for many aspects of motor behavior; from retinal stabilization to goal-seeking. In particular, it suggests that motor control can be understood as fulfilling prior expectations about proprioceptive sensations. This formulation can explain why adaptive behavior emerges in biological agents and suggests a simple alternative to optimal control theory. We illustrate these points using simulations of oculomotor control and then apply to same principles to cued and goal-directed movements. In short, the free-energy formulation may provide an alternative perspective on the motor control that places it in an intimate relationship with perception

    ¿Y si la tierra flotara sobre el agua? Sentido y sinsentido del orbe en Tales de Mileto a la luz del Gran Terremoto de Tohoku.

    Get PDF
    Desde la perspectiva del Gran Terremoto de Tohoku ocurrido en Japon en marzo de 2011, resulta inquietante considerar que el filosofo Tales de Mileto hubiese hecho pender del agua todo el orden del universo; y es que, a que sentido cabria aferrar el conjunto del cosmos si este se hallara sometido a lo impredecible de las corrientes? La filosofia posterior ha eludido a menudo este problema arguyendo que, en el caso de la teoria de la flotacion, nos hallariamos ante una hipotesis cientifica (antes que filosofica) y por demas errada, o bien frente a un elemento tomado de cosmologias de Oriente Medio y ajeno, por lo tanto, a lo que de racional existe en el pensamiento de Tales. Pero itendriamos que conformarnos tan facilmente hoy, en Japon, con una explicacion tal y rechazar todo intento de interpretacion filosofica

    An Optimal Medium for Haptics

    Full text link
    Humans rely on multimodal perception to form representations of the world. This implies that environmental stimuli must remain consistent and predictable throughout their journey to our sensory organs. When it comes to vision, electromagnetic waves are minimally affected when passing through air or glass treated for chromatic aberrations. Similar conclusions can be drawn for hearing and acoustic waves. However, tools that propagate elastic waves to our cutaneous afferents tend to color tactual perception due to parasitic mechanical attributes such as resonances and inertia. These issues are often overlooked, despite their critical importance for haptic devices that aim to faithfully render or record tactile interactions. Here, we investigate how to optimize this mechanical transmission with sandwich structures made from rigid, lightweight carbon fiber sheets arranged around a 3D-printed lattice core. Through a comprehensive parametric evaluation, we demonstrate that this design paradigm provides superior haptic transparency. Drawing an analogy with topology optimization, our solution approaches a foreseeable technological limit. This novel medium offers a practical way to create high-fidelity haptic interfaces, opening new avenues for research on tool-mediated interactions

    Evidence or Confidence: What Is Really Monitored during a Decision?

    Full text link
    Assessing our confidence in the choices we make is important to making adaptive decisions, and it is thus no surprise that we excel in this ability. However, standard models of decision-making, such as the drift-diffusion model (DDM), treat confidence assessment as a post hoc or parallel process that does not directly influence the choice, which depends only on accumulated evidence. Here, we pursue the alternative hypothesis that what is monitored during a decision is an evolving sense of confidence (that the to-be-selected option is the best) rather than raw evidence. Monitoring confidence has the appealing consequence that the decision threshold corresponds to a desired level of confidence for the choice, and that confidence improvements can be traded off against the resources required to secure them. We show that most previous findings on perceptual and value-based decisions traditionally interpreted from an evidence-accumulation perspective can be explained more parsimoniously from our novel confidence-driven perspective. Furthermore, we show that our novel confidence-driven DDM (cDDM) naturally generalizes to decisions involving any number of alternative options – which is notoriously not the case with traditional DDM or related models. Finally, we discuss future empirical evidence that could be useful in adjudicating between these alternatives

    Perception and Hierarchical Dynamics

    Get PDF
    In this paper, we suggest that perception could be modeled by assuming that sensory input is generated by a hierarchy of attractors in a dynamic system. We describe a mathematical model which exploits the temporal structure of rapid sensory dynamics to track the slower trajectories of their underlying causes. This model establishes a proof of concept that slowly changing neuronal states can encode the trajectories of faster sensory signals. We link this hierarchical account to recent developments in the perception of human action; in particular artificial speech recognition. We argue that these hierarchical models of dynamical systems are a plausible starting point to develop robust recognition schemes, because they capture critical temporal dependencies induced by deep hierarchical structure. We conclude by suggesting that a fruitful computational neuroscience approach may emerge from modeling perception as non-autonomous recognition dynamics enslaved by autonomous hierarchical dynamics in the sensorium

    A Hierarchy of Time-Scales and the Brain

    Get PDF
    In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure–function relationships, which can be tested by manipulating the time-scales of sensory input

    Uncertainty in perception and the Hierarchical Gaussian Filter

    Get PDF
    In its full sense, perception rests on an agent's model of how its sensory input comes about and the inferences it draws based on this model. These inferences are necessarily uncertain. Here, we illustrate how the Hierarchical Gaussian Filter (HGF) offers a principled and generic way to deal with the several forms that uncertainty in perception takes. The HGF is a recent derivation of one-step update equations from Bayesian principles that rests on a hierarchical generative model of the environment and its (in)stability. It is computationally highly efficient, allows for online estimates of hidden states, and has found numerous applications to experimental data from human subjects. In this paper, we generalize previous descriptions of the HGF and its account of perceptual uncertainty. First, we explicitly formulate the extension of the HGF's hierarchy to any number of levels; second, we discuss how various forms of uncertainty are accommodated by the minimization of variational free energy as encoded in the update equations; third, we combine the HGF with decision models and demonstrate the inversion of this combination; finally, we report a simulation study that compared four optimization methods for inverting the HGF/decision model combination at different noise levels. These four methods (Nelder-Mead simplex algorithm, Gaussian process-based global optimization, variational Bayes and Markov chain Monte Carlo sampling) all performed well even under considerable noise, with variational Bayes offering the best combination of efficiency and informativeness of inference. Our results demonstrate that the HGF provides a principled, flexible, and efficient-but at the same time intuitive-framework for the resolution of perceptual uncertainty in behaving agents
    corecore