315 research outputs found

    Challenges of providing healthcare worker education and training in protracted conflict: a focus on non-government controlled areas in north west Syria

    Get PDF
    Without healthcare workers (HCWs), health and humanitarian provision in Syria cannot be sustained either now or in the post-conflict phase. The protracted conflict has led to the exodus of more than 70% of the healthcare workforce. Those remaining work in dangerous conditions with insufficient resources and a healthcare system that has been decimated by protracted conflict. For many HCWs, particularly those in non-government-controlled areas (NGCAs) of Syria, undergraduate education and postgraduate training has been interrupted with few opportunities to continue. In this manuscript, we explore initiatives present in north west Syria at both undergraduate and postgraduate level for physician and non-physician HCWs. Conclusion: Challenges to HCW education in north west Syria can be broadly divided into 1. Organisational (local healthcare leadership and governance, coordination and collaboration between stakeholders, competition between stakeholders and insufficient funding.) 2. Programmatic (lack of accreditation or recognition of qualifications, insufficient physical space for teaching, exodus of faculty affecting teaching and training, prioritisation of physicians over non-physicians, informally trained healthcare workers.) 3. Healthcare system related (politicisation of healthcare system, changing healthcare needs of the population, ongoing attacks on healthcare.) Locally implementable strategies including dedicated funding are key to supporting retention of HCWs and return during post-conflict reconstruction

    Diffuse alveolar damage (DAD) resulting from coronavirus disease 2019 Infection is Morphologically Indistinguishable from Other Causes of DAD

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162704/2/his14180.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162704/1/his14180_am.pd

    Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans

    Get PDF
    Biogenic amine neurotransmitters play a central role in metazoan biology, and both their chemical structures and cognate receptors are evolutionarily conserved. Their primary roles are in cell-to-cell signaling, as biogenic amines are not normally recruited for communication between separate individuals. Here, we show that in the nematode C. elegans, a neurotransmitter-sensing G protein-coupled receptor, TYRA-2, is required for avoidance responses to osas#9, an ascaroside pheromone that incorporates the neurotransmitter, octopamine. Neuronal ablation, cell-specific genetic rescue, and calcium imaging show that tyra-2 expression in the nociceptive neuron, ASH, is necessary and sufficient to induce osas#9 avoidance. Ectopic expression in the AWA neuron, which is generally associated with attractive responses, reverses the response to osas#9, resulting in attraction instead of avoidance behavior, confirming that TYRA-2 partakes in the sensing of osas#9. The TYRA-2/osas#9 signaling system represents an inter-organismal communication channel that evolved via co-option of a neurotransmitter and its cognate receptor

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Designing a broad-spectrum integrative approach for cancer prevention and treatment

    Get PDF
    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered

    A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation

    Get PDF
    Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components
    • …
    corecore