581 research outputs found

    Impacts of both reference population size and inclusion of a residual polygenic effect on the accuracy of genomic prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this work was to study the impact of both the size of genomic reference populations and the inclusion of a residual polygenic effect on dairy cattle genetic evaluations enhanced with genomic information.</p> <p>Methods</p> <p>Direct genomic values were estimated for German Holstein cattle with a genomic BLUP model including a residual polygenic effect. A total of 17,429 genotyped Holstein bulls were evaluated using the phenotypes of 44 traits. The Interbull genomic validation test was implemented to investigate how the inclusion of a residual polygenic effect impacted genomic estimated breeding values.</p> <p>Results</p> <p>As the number of reference bulls increased, both the variance of the estimates of single nucleotide polymorphism effects and the reliability of the direct genomic values of selection candidates increased. Fitting a residual polygenic effect in the model resulted in less biased genome-enhanced breeding values and decreased the correlation between direct genomic values and estimated breeding values of sires in the reference population.</p> <p>Conclusions</p> <p>Genetic evaluation of dairy cattle enhanced with genomic information is highly effective in increasing reliability, as well as using large genomic reference populations. We found that fitting a residual polygenic effect reduced the bias in genome-enhanced breeding values, decreased the correlation between direct genomic values and sire's estimated breeding values and made genome-enhanced breeding values more consistent in mean and variance as is the case for pedigree-based estimated breeding values.</p

    Studies on changes of estimated breeding values of U.S. Holstein bulls for final score from the first to second crop of daughters

    Get PDF
    The purpose of this study was to find ways of reducing changes of sire predicted transmitting ability for type’s final scores (PTATs) from the first to second crop of daughters. The PTATs were estimated from two datasets: D01 (scores recorded up to 2001) and D05 (scores recorded up to 2005). The PTAT changes were calculated as the difference between the evaluations based on D01 and D05. The PTATs were adjusted to a common genetic base of all evaluated cows born in 1995. The single-trait (ST) animal model included the fixed effects of the herd–year–season–classifier, age by year group at classification, stage of lactation at classification, registry status of animals, and additive genetic and permanent environment random effects. Unknown parent groups (UPGs) were defined based on every other birth year starting from 1972. Modifications to the ST model included the usage of a single record per cow, separate UPGs for first and second crop daughters, separate UPGs for sires and dams, and deepened pedigrees for dams with missing phenotypic records. Also, the multiple-trait (MT) model treated records of registered and grade cows as correlated traits. The mean PTAT change, for all of the sires, was close to zero in all of the models analyzed. The estimated mean PTAT change for 145 sires with 40 to 100 first crop and ≥200 second crop daughters was −0.33, −0.20, −0.13, −0.28, and −0.12 with ST, only first records, only last records, updated pedigrees, and allowing separate parent groups (PGs) for sires and dams after updating the pedigrees, respectively. The percentages of sires showing PTAT decline were reduced from 74.5 (with ST) to 57.3 by using only the last records of cows, and to 56.4 by allowing separate UPGs for sires and dams after updating the pedigrees. Though updating of the pedigrees alone was not effective, separate UPGs for sires together with additional pedigree was helpful in reducing the bias

    Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection

    Get PDF
    <p>Abstract</p> <p>A dataset was simulated and distributed to participants of the QTLMAS XII workshop who were invited to develop genomic selection models. Each contributing group was asked to describe the model development and validation as well as to submit genomic predictions for three generations of individuals, for which they only knew the genotypes. The organisers used these genomic predictions to perform the final validation by comparison to the true breeding values, which were known only to the organisers. Methods used by the 5 groups fell in 3 classes 1) fixed effects models 2) BLUP models, and 3) Bayesian MCMC based models. The Bayesian analyses gave the highest accuracies, followed by the BLUP models, while the fixed effects models generally had low accuracies and large error variance. The best BLUP models as well as the best Bayesian models gave unbiased predictions. The BLUP models are clearly sensitive to the assumed SNP variance, because they do not estimate SNP variance, but take the specified variance as the true variance. The current comparison suggests that Bayesian analyses on haplotypes or SNPs are the most promising approach for Genomic selection although the BLUP models may provide a computationally attractive alternative with little loss of efficiency. On the other hand fixed effect type models are unlikely to provide any gain over traditional pedigree indexes for selection.</p

    Connectedness among herds of beef cattle bred under natural service

    Get PDF
    Background: A procedure to measure connectedness among herds was applied to a beef cattle population bred by natural service. It consists of two steps: (a) computing coefficients of determination (CDs) of comparisons among herds; and (b) building sets of connected herds. Methods: The CDs of comparisons among herds were calculated using a sampling-based method that estimates empirical variances of true and predicted breeding values from a simulated n-sample. Once the CD matrix was estimated, a clustering method that can handle a large number of comparisons was applied to build compact clusters of connected herds of the Bruna dels Pirineus beef cattle. Since in this breed, natural service is predominant and there are almost no links with reference sires, to estimate CDs, an animal model was used taking into consideration all pedigree information and, especially, the connections with dams. A sensitivity analysis was performed to contrast single-trait sire and animal model evaluations with different heritabilities, multiple-trait animal model evaluations with different degrees of genetic correlations and models with maternal effects. Results: Using a sire model, the percentage of connected herds was very low even for highly heritable traits whereas with an animal model, most of the herds of the breed were well connected and high CD values were obtained among them, especially for highly heritable traits (the mean of average CD per herd was 0.535 for a simulated heritability of 0.40). For the lowly heritable traits, the average CD increased from 0.310 in the single-trait evaluation to 0.319 and 0.354 in the multi-trait evaluation with moderate and high genetic correlations, respectively. In models with maternal effects, the average CD per herd for the direct effects was similar to that from single-trait evaluations. For the maternal effects, the average CD per herd increased if the maternal effects had a high genetic correlation with the direct effects, but the percentage of connected herds for maternal effects was very low, less than 12%. Conclusions: The degree of connectedness in a bovine population bred by natural service mating, such as Bruna del Pirineus beef cattle, measured as the CD of comparisons among herds, is high. It is possible to define a pool of animals for which estimated breeding values can be compared after an across-herds genetic evaluation, especially for highly heritable traits

    A unified treatment of single component replacement models

    Get PDF
    In this paper we discuss a general framework for single component replacement models. This framework is based on the regenerative structure of these models and by using results from renewal theory a unified presentation of the discounted and average finite and infinite horizon cost models is given. Finally, some well-known replacement models are discussed, and making use of the previous results an easy derivation of their cost functions is presented

    The Genomics of Speciation in Drosophila: Diversity, Divergence, and Introgression Estimated Using Low-Coverage Genome Sequencing

    Get PDF
    In nature, closely related species may hybridize while still retaining their distinctive identities. Chromosomal regions that experience reduced recombination in hybrids, such as within inversions, have been hypothesized to contribute to the maintenance of species integrity. Here, we examine genomic sequences from closely related fruit fly taxa of the Drosophila pseudoobscura subgroup to reconstruct their evolutionary histories and past patterns of genic exchange. Partial genomic assemblies were generated from two subspecies of Drosophila pseudoobscura (D. ps.) and an outgroup species, D. miranda. These new assemblies were compared to available assemblies of D. ps. pseudoobscura and D. persimilis, two species with overlapping ranges in western North America. Within inverted regions, nucleotide divergence among each pair of the three species is comparable, whereas divergence between D. ps. pseudoobscura and D. persimilis in non-inverted regions is much lower and closer to levels of intraspecific variation. Using molecular markers flanking each of the major chromosomal inversions, we identify strong crossover suppression in F1 hybrids extending over 2 megabase pairs (Mbp) beyond the inversion breakpoints. These regions of crossover suppression also exhibit the high nucleotide divergence associated with inverted regions. Finally, by comparison to a geographically isolated subspecies, D. ps. bogotana, our results suggest that autosomal gene exchange between the North American species, D. ps. pseudoobscura and D. persimilis, occurred since the split of the subspecies, likely within the last 200,000 years. We conclude that chromosomal rearrangements have been vital to the ongoing persistence of these species despite recent hybridization. Our study serves as a proof-of-principle on how whole genome sequencing can be applied to formulate and test hypotheses about species formation in lesser-known non-model systems

    The impact of genetic relationship information on genomic breeding values in German Holstein cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The impact of additive-genetic relationships captured by single nucleotide polymorphisms (SNPs) on the accuracy of genomic breeding values (GEBVs) has been demonstrated, but recent studies on data obtained from Holstein populations have ignored this fact. However, this impact and the accuracy of GEBVs due to linkage disequilibrium (LD), which is fairly persistent over generations, must be known to implement future breeding programs.</p> <p>Materials and methods</p> <p>The data set used to investigate these questions consisted of 3,863 German Holstein bulls genotyped for 54,001 SNPs, their pedigree and daughter yield deviations for milk yield, fat yield, protein yield and somatic cell score. A cross-validation methodology was applied, where the maximum additive-genetic relationship (<it>a</it><sub><it>max</it></sub>) between bulls in training and validation was controlled. GEBVs were estimated by a Bayesian model averaging approach (BayesB) and an animal model using the genomic relationship matrix (G-BLUP). The accuracy of GEBVs due to LD was estimated by a regression approach using accuracy of GEBVs and accuracy of pedigree-based BLUP-EBVs.</p> <p>Results</p> <p>Accuracy of GEBVs obtained by both BayesB and G-BLUP decreased with decreasing <it>a</it><sub><it>max </it></sub>for all traits analyzed. The decay of accuracy tended to be larger for G-BLUP and with smaller training size. Differences between BayesB and G-BLUP became evident for the accuracy due to LD, where BayesB clearly outperformed G-BLUP with increasing training size.</p> <p>Conclusions</p> <p>GEBV accuracy of current selection candidates varies due to different additive-genetic relationships relative to the training data. Accuracy of future candidates can be lower than reported in previous studies because information from close relatives will not be available when selection on GEBVs is applied. A Bayesian model averaging approach exploits LD information considerably better than G-BLUP and thus is the most promising method. Cross-validations should account for family structure in the data to allow for long-lasting genomic based breeding plans in animal and plant breeding.</p
    corecore