2,037 research outputs found

    Pushing context-awareness down to the core: moreflexibility for the PerLa language

    Get PDF
    Information technology is increasingly pervading our envi- ronment, making real Mark Weiser’s vision of a “disappear- ing technology”. The work described in this paper focuses on using context to enable pervasive system personaliza- tion, allowing context-aware sensor-data tailoring. Since sensor networks, besides data collection, are also able to pro- duce active behaviours, the tailoring capabilities are also ex- tended to these, thus applying context-awareness to generic system operations. Moreover, because the number of pos- sible context can grow rapidly with the complexity of the application, the design phase is also supported by the possi- bility to speed-up and modularize the definition of the data and operations associated with each specific context, pro- ducing a support tool that eases the job of the designers of modern context-aware pervasive systems

    Towards autonomic pervasive systems: the PerLa context language

    Get PDF
    The property of context-awareness, inherent to a Pervasive System, requires a clear definition of context and of how the context parameter values must be extracted from the real world. Since often the same variables are common to the operational system and to the context it operates into, the usage of the same language to manage both the application and the context can lead to substantial savings in application development time and costs. In this paper we propose a context-management extension to the PerLa language and middleware that allows for declarative gathering of context data from the environment, feeding this data to the internal context model and, once a context is active, acting on the relevant resources of the pervasive system, according to the chosen contextual policy

    Energy expenditure estimation using visual and inertial sensors

    Get PDF
    © The Institution of Engineering and Technology 2017. Deriving a person's energy expenditure accurately forms the foundation for tracking physical activity levels across many health and lifestyle monitoring tasks. In this study, the authors present a method for estimating calorific expenditure from combined visual and accelerometer sensors by way of an RGB-Depth camera and a wearable inertial sensor. The proposed individual-independent framework fuses information from both modalities which leads to improved estimates beyond the accuracy of single modality and manual metabolic equivalents of task (MET) lookup table based methods. For evaluation, the authors introduce a new dataset called SPHERE_RGBD + Inertial_calorie, for which visual and inertial data are simultaneously obtained with indirect calorimetry ground truth measurements based on gas exchange. Experiments show that the fusion of visual and inertial data reduces the estimation error by 8 and 18% compared with the use of visual only and inertial sensor only, respectively, and by 33% compared with a MET-based approach. The authors conclude from their results that the proposed approach is suitable for home monitoring in a controlled environment

    A Guide to the SPHERE 100 Homes Study Dataset

    Get PDF
    The SPHERE project has developed a multi-modal sensor platform for health and behavior monitoring in residential environments. So far, the SPHERE platform has been deployed for data collection in approximately 50 homes for duration up to one year. This technical document describes the format and the expected content of the SPHERE dataset(s) under preparation. It includes a list of some data quality problems (both known to exist in the dataset(s) and potential ones), their workarounds, and other information important to people working with the SPHERE data, software, and hardware. This document does not aim to be an exhaustive descriptor of the SPHERE dataset(s); it also does not aim to discuss or validate the potential scientific uses of the SPHERE data

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    DS-KCF: a real-time tracker for RGB-D data

    Get PDF
    © 2016 The Author(s) We propose an RGB-D single-object tracker, built upon the extremely fast RGB-only KCF tracker that is able to exploit depth information to handle scale changes, occlusions, and shape changes. Despite the computational demands of the extra functionalities, we still achieve real-time performance rates of 35–43 fps in MATLAB and 187 fps in our C++ implementation. Our proposed method includes fast depth-based target object segmentation that enables, (1) efficient scale change handling within the KCF core functionality in the Fourier domain, (2) the detection of occlusions by temporal analysis of the target’s depth distribution, and (3) the estimation of a target’s change of shape through the temporal evolution of its segmented silhouette allows. Finally, we provide an in-depth analysis of the factors affecting the throughput and precision of our proposed tracker and perform extensive comparative analysis. Both the MATLAB and C++ versions of our software are available in the public domain
    corecore