

Pushing context-awareness down to the core: more
flexibility for the PerLa language

Fabio A. Schreiber, Letizia Tanca, Romolo Camplani, D. Viganò

Politecnico di Milano, Italy

PersDB 2012

6th International Workshop on

Personalized Access, Profile Management, and Context Awareness in Databases

August 31, 2012 - Istanbul, Turkey

In conjunction with VLDB 2012

pp. 1 – 6

http://persdb2012.cs.umn.edu/papers/4.Schreiber-PersDB12.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55230666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vldb2012.org/

Pushing contextawareness down to the core: more
flexibility for the PerLa language

Fabio A. Schreiber
Politecnico di Milano, Italy

fabio.schreiber@polimi.it

L. Tanca
Politecnico di Milano, Italy

letizia.tanca@polimi.it

R. Camplani
Politecnico di Milano, Italy

romolo.camplani@polimi.it

D. Viganò
Politecnico di Milano, Italy

diego.vigano@mail.polimi.it

ABSTRACT

Information technology is increasingly pervading our envi-
ronment, making real Mark Weiser’s vision of a “disappear-
ing technology”. The work described in this paper focuses
on using context to enable pervasive system personaliza-
tion, allowing context-aware sensor-data tailoring. Since
sensor networks, besides data collection, are also able to pro-
duce active behaviours, the tailoring capabilities are also ex-
tended to these, thus applying context-awareness to generic
system operations. Moreover, because the number of pos-
sible context can grow rapidly with the complexity of the
application, the design phase is also supported by the possi-
bility to speed-up and modularize the definition of the data
and operations associated with each specific context, pro-
ducing a support tool that eases the job of the designers of
modern context-aware pervasive systems.

1. INTRODUCTION
Information technology is increasingly pervading the sur-

rounding environment, making real the vision of a “disap-
pearing technology” expressed by Mark Weiser in his work
[14]. Wireless Sensor Networks (WSN) are a clear exam-
ple of this phenomenon, since they allow humans to interact
with the environment, feeding the user with large set of het-
erogeneous data, which, considered together, could poten-
tially generate confusion instead of widening the knowledge
about the environment and its potential benefits. Filtering
this plethora of data according to user’s needs and, more
importantly, her/his current situation is then the key for ef-
fective and efficient generation of knowledge. The concept of
context, describing the “situation of every entity in the en-
vironment” [6], becomes a first-class citizen since it allows
to tailor the available data for the user, reducing the “infor-
mation noise”. Furthermore, this perspective opens the way
for a proactive interaction with the environment, enabling

the possibility of enacting, for each particular user under a
particular situation, the actions to be performed on/by the
WSN.

Merging modern pervasive system frameworks with the
concept of context is thus a fundamental cornerstone that
must achieved. In our previous work [12] we started focus-
ing on this goal, using the sensors of the network to char-
acterize and discover possible context, and defining suitable
actions accordingly. As presented in Section 3, we adopted
the Context Dimension Tree (CDT) model [2] to represent
the possible contexts, using the PerLa framework [13] to
manage the pervasive system.

The contribution of the work described in this paper, orig-
inating from our previous promising results and also from
previous applications of the data tailoring concept to more
traditional databases [2, 4], focuses instead on using con-
text to enable the sensor-data tailoring capabilities previ-
ously discussed. Since sensor networks, besides data collec-
tion, are also able to enforce active system behaviours, the
tailoring capabilities are also extended to these, thus apply-
ing context-awareness to generic system operations. More-
over, as shown in detail in Section 4, since the number of
possible context can grow rapidly with the complexity of
the application, the design phase is also supported by the
possibility to speed-up and modularize the definition of the
data and operations associated with each specific context,
producing a support tool that eases the work of designing
modern context-aware pervasive systems.

Throughout this paper, we consider, as an example, a wine
producer, where a set of networked sensors is employed to
monitor the different phases of wine production. The wine
lifecycle can be divided into the Growth, Ageing and Trans-
port phases. Each phase is characterized by different risks
that must be monitored respectively by the farmer, the oe-
nologist and the truck driver who delivers the bottled wine.
During growth, grapes can be afflicted, with different de-
grees of importance, by various types of diseases. Moreover,
the bottled wine can’t be put under direct sunlight because
of the overheating risk.

In Section 2 projects addressing similar issues are briefly
introduced; in Section 3, we introduce the CDT model and
its representation in PerLa; in Section 4 the automatic com-
position of the contextual block is described. In Section 5
we present as case study an application to monitor the wine
production; finally, we discuss the conclusions in Section 6.

2. RELATED WORK
A very comprehensive analysis of other projects active in

this research field can be found in [8]. From these works a
shared approach to context-aware management emerges, in
which context is mainly analyzed at the application level, af-
ter having retrieved all the necessary information from the
sensors possibly using a dedicated language [11]. This is,
for example, the case of CIS [9] where contextual data is
stored in a central database later queried using SQL. The
project CASS [7] adopts a similar centralised database ap-
proach. iQueue (with the iQL language [5]) allows instead
to compose contextual information according to data spec-
ification requirements and provides a library that can be
used to build context-aware applications. With our previ-
ous work we argued that a middleware-based approach is
feasible, with the overall computational complexity growing
linearly with the number of deployed sensors. Literature also
contains some detailed surveys both on the different models
adopted to represent context and on pervasive management
system frameworks available nowadays. As an example, the
work presented in [1] gives a historic overview on various
context models, while [3] presents a framework used to com-
pare different formalism (our CDT model is also taken into
account in this analysis). As far as pervasive management
system frameworks are concerned, a detailed comparison can
finally be found in [13].

3. PERLA AND THE CDT
This section briefly introduces both the context model we

employed to model contexts as well as the framework we
adopted to manage pervasive systems and which allows us
to specify the desired actions.

3.1 PerLa
As extensively presented in [13] PerLa is a framework to

configure and manage modern pervasive systems and, in par-
ticular, wireless sensor networks. PerLa adopts the database
metaphor of the pervasive system: such approach, already
adopted in the literature [10], is data-centric and relies on
a SQL-like query language. PerLa queries allow to retrieve
data from the pervasive system, to prescribe how the gath-
ered data have to be processed and stored and to specify
the behaviors of the devices. Perla currently support three
types of queries: Low Level Queries (LLQ), which define
the behavior of every single or of a homogeneous group of
nodes, and specify the data selection criteria, the sampling
frequency and the computation to be performed on sampled
data; High Level Queries (HLQ), which define the high level
elaboration involving data streams coming from multiple
nodes, and are equivalent to SQL operations on data streams
and Actuation Queries (AQ), which provide the mechanisms
to change parameters of the devices or to send commands to
actuators. The other fundamental component of PerLa is a
middleware whose architecture exposes two main interfaces:
a high-level interface, which allows query injection and a
low-level interface that provides plug&play mechanisms to
seamlessly add new devices and support energy saving.

3.2 Context Dimension Tree (CDT)
According to the CDT model [4] the set of possible con-

texts of the environment can be modeled as a labeled tree
composed of dimensions and concepts nodes. The former

are used to capture the different characteristics of the envi-
ronment, while the latter are used to represent the admis-
sible values that can be assumed by the dimensions. Both
dimensions and concepts can be semantically enriched us-
ing attributes, that are parameters whose values are pro-
vided at run-time. Moreover, the “tree” term suggests that
the designer can model the environment using the preferred
granularity, nesting more than one level of dimensions with
the unique restriction that every dimension can only have
concept children and vice versa. This constraint imposes
that the node colors alternate while descending the tree, as
clearly shown in Figure 1a, where the visual representation
of CDT of our running example is exposed, containing the
fundamental aspects of context in the vineyard scenario. For
example the dimension Role captures the actors involved in
the wine production while the Phase dimension, together
with the Risk dimension, model the various phases and
the possible risks that could compromise the final produced
wine.

In order to denote that a dimension has assumed a cer-
tain value we use the < Dimension = V alue > notation,
called a context element. A context C can then be for-
malized as the conjunction of one or more context elements:
C ≡

∧
i
< Dimensioni = V alueij >. As an example, on

the CDT of Figure 1a, a possible context could be the one
graphically represented in Figure 1b as a subtree of the one
of 1a. It is worth noticing that not all possible subtrees
are valid contexts. This is the case of Figure 1c where the
dimension Role assumes the values Driver and Farmer

simultaneously (the children values of one dimension are al-
ways to be instantiated in mutual exclusion). The designer
can specify further constraints forbidding some context el-
ements to be used in the same context definition. These
constraints, called useless context constraints are depicted
using a line that links the mutually exclusive values. In our
example, the truck Driver will never be involved in any
of the activities which are pertinent of the grapes Growth
phase.

The introduction of the CDT context model and the PerLa
framework make now possible to describe how their com-
bined action can be used to achieve a context-aware perva-
sive systems management.

3.3 Embedding context into PerLa
As discussed in the introduction, “pushing” the knowledge

of context from the application down to the middleware level
was the main contribution of previous work [12]. To achieve
our goals we designed and implemented:

• an extension of the existing PerLa language syntax,
called Context Language (CL), in order to declare,
inside PerLa, the CDT, the contexts as well as the
actions to be performed accordingly;

• the Context Manager (CM), able to maintain and
manage the declared CDT, detect active contexts and
performs the desired actions accordingly;

The syntax of the CL has been divided into two parts,
called CDT Declaration and Context creation, both pre-
sented in details in our previous work [12].

CDT Declaration. This part allows the user to specify the
CDT, i.e. all the application-relevant dimensions and values

Figure 1: CDT

they can assume. As an example of its usage we report
the syntax to define completely the Risk dimension of our
running example as well as the definition of the Driver-
Growth useless context constraint.

CREATE DIMENSION Risk

CREATE CONCEPT Disease

WHEN get_interest_topic()=’disease’

CREATE CONCEPT Overheat

WHEN temperature > 30 AND brightness>0.75;

CREATE DIMENSION Type

CHILD OF Disease

CREATE ATTRIBUTE $id

CREATE DIMENSION Affected_hectares

CHILD OF Disease

CREATE ATTRIBUTE $square_meters

CREATE DIMENSION Role

...

CREATE CONCEPT Driver

EXCLUDES Phase.Growth

A set of CREATE DIMENSION/CONCEPT statements
allows to declare the dimensions as well as their concepts
nodes. The sibling of an internal dimension can be speci-
fied adopting the CHILD OF clause, otherwise the dimen-
sion is meant to be a child of the tree root. When cre-
ating a concept of a dimension, the designer must specify
the name and the condition for assuming the specified val-
ues by means of numeric observables that can be measured
from the environment (WHEN clause). When, instead, the
design requires the presence of attributes the CREATE AT-
TRIBUTE clause must be used, using the $ sign as a prefix
before the name of the attribute, meaning that its value will
be supplied by the application at runtime. The EXCLUDES
clause is employed to express useless contexts constraints.

Context declaration. This part of the syntax allows the
designer to declare a context on a defined CDT and con-
trol its activation by defining a contextual block, which is
composed by four fundamental parts, called components:

• ACTIVATION component: allows the designer to
declare a context, using a CREATE CONTEXT clause
and associating a name to it. The ACTIVE IF state-
ment is used to translate theContext ≡

∧
i,j
(Dimensionj

=V aluei) statement into PerLa.

• ENABLE component: introduced by an ON EN-
ABLE clause, allows to express the actions that must
be performed when a context is recognized as active;

• DISABLE component: introduced by an ON DIS-
ABLE clause is the counterpart of the previous one,
allowing to chose the actions to be performed when
the declared context stops being active;

• REFRESH component: instructs the middleware on
how often the necessary controls must be performed.

In the following listing we report a block declaration for
the growth monitoring example:

CREATE CONTEXT Growth Monitoring

ACTIVE IF phase = ’growth’ AND role = ’farmer’

AND Disease.Type=3

AND Disease.Affected_Hectares = 200

ON ENABLE (Growth Monitoring):

SELECT humidity, temperature

WHERE humidity > 0 AND temperature>0

SAMPLING EVERY 6 h

EXECUTE IF device_location = ’wineyard’

ON DISABLE:

DROP Growth Monitoring

REFRESH EVERY 1d

4. AUTOMATIC COMPOSITION
In the previous section we have shown how a growing tree

depth of the CDT allows the designer to capture the as-
pects of the environment with different granularities, since
more dimensions (and thus concepts) allow to express more
possible contexts. In particular the total number of contexts
grows exponentially with the number of concept nodes, and,
even for middle-sized CDTs, the task of declaring all the
contexts using the aforementioned syntax becomes rapidly
unfeasible for the designer. As an example from a CDT
with 5 dimensions with 3 concepts nodes each, even with
many constraints, more than 500 different meaningful con-
texts can be generated, charging the designer with the hard
task of declaring i) every single context and ii) a set of ac-
tions for each one of them. A more engineered approach is
the main objective of the second phase of our work. The
next section illustrates the possibility of relieving the de-
signer from this arduous task, enabling the middleware to
automatically build the contextual block starting from the
contextual block components, called partials.

Partial components. The precise syntax of the PerLa lan-
guage allows to separate the block components into one or
more partials, as shown in Figure 2.

This division is particularly meaningful for the ENABLE

and DISABLE components, while the only block that can’t

ր

ON ENABLE ...:

SELECT pressure

WHERE pressure>0

SAMPLING EVERY 2m

ON ENABLE ...:

SELECT pressure,humidity

WHERE pressure>0

AND humidity>0

SAMPLING EVERY 2m

EXECUTE IF device_id>3

ց

ON ENABLE ...:

SELECT humidity

WHERE humidity>0

EXECUTE IF device_id>3

Figure 2: Partial (ENABLE) components definition

Figure 3: Contextual block composition ⊕D

be divided is the ACTIVATION block since it deals with the
definition of context itself. The only requirements for the
partials is that they must be syntactically and semantically
correct.

Automatic composition. With the introduction of partials
it is now possible to describe the main concepts behind auto-
matic composition of the contextual block. The main idea,
already adopted in [4] for the tailoring of data, is illustrated
in Figure 3. The designer must only associate one or more
partials with each context element of the CDT. When the
system has to compose a contextual block, it starts from the
partials associated with the context elements which are part
of the context and combines them by means of a generic op-
erator, represented here by the symbol ⊕. This operator can
be implemented in different ways, two of which are proposed
in the following.

The association of the partials with the CDT context el-
ements can be performed using the following syntax, which
enriches the CDT declaration section of the CL.

CREATE DIMENSION <Dimension_Name>

[CHILD OF <Parent_Node>]

[CREATE ATTRIBUTE $<Attribute_Name>] |

{CREATE CONCEPT <Concept_Name> WHEN <Condition>

[WITH ENABLE COMPONENT: <PerLa_Query>]

[WITH DISABLE COMPONENT: <PerLa_Query>]

[WITH REFRESH COMPONENT: <Period>]

[CREATE ATTRIBUTE $<Attribute_Name>]*
[EVALUATED ON <Low_Level_Query>]}*

Listing 1: Altered CL syntax to support partial
components

The WITH ENABLE COMPONENT clause may contain
any query expressed using PerLa. The same holds for the
WITH DISABLE COMPONENT clause. The last clause
(WITH REFRESH COMPONENT) allows to specify the
time period (always using PerLa’s syntax) to be used. Fi-
nally the composition can be carried out both at design and
at run-time (the main differences will be analyzed in the fol-
lowing paragraphs). In order to indicate the adopted strat-
egy we make a difference between the two versions of the ⊕
operator: the design-time version ⊕D and the run-time one
⊕R.

Designtime composition⊕D. When the association phase
is complete and before the system is put into an operational
state, it is possible to combinatorially generate all the pos-
sible contexts that are defined by the CDT and that are
not forbidden by the constraints. For each possible context
the relative contextual block is then automatically generated
composing the partials associated in the previous phase.
In the following the algorithm of composition is shown in
pseudo-code.

This algorithm, as its first step, retrieves all the relative
context elements (i.e.: the couples (Dimensioni = V aluej)
for all possible context. This phase is represented by the
getContextElements() function, which is executed for all
possible contexts in C. This function returns the set (repre-
sented as an array in the algorithm) containing the context
elements (Dimensioni = V aluej) that are associated with
the context passed as argument. With the context elements
“at hand”, the CM exploits three functions1 in order to re-
trieve the partial components associated with every context
element retrieved at the previous step. The getEnable-
Components(), getDisableComponents() and getRe-
freshComponents() are in charge to accomplish this task.
When all these inputs have been retrieved a composeBlock()
function is invoked. This function firstly creates an empty
contextual block. All the retrieved partial components are
attached (attach() function) to the empty block in the right
position (using the dot notation to indicate the access to
a precise component of a contextual block). As far as the
REFRESH component is concerned, the composeBlock()
function computes (and attaches) the lowest refresh value
among the ones contained in the R[] set. It seems reason-
able, in fact, to say that the context whose state must be
controlled with a higher frequency (smallest temporal val-
ues) is the most critical one and its refresh value is to be
chosen during composition. Except for the discussed RE-

FRESH component, the ENABLE and DISABLE components
are formed by multiple clauses expressed using PerLa syn-
tax: the simple append, one after other, of all the clauses
contained in this components is not enough. Thanks to the
precise internal structure of PerLa queries discussed in [13],
an optimizeBlock() function is in charge, acting on the
composed ENABLE and DISABLE components, of placing
every single PerLa clause in the right order and position
according the HLQ, LLQ and AQ syntax. This task is par-
ticularly important for LLQs, since, as shown in [13], these
queries are composed by at most four different sections: ev-
ery statement of every component must then be placed in
the correct order. Further optimizations can be achieved, es-

1The algorithm reports only one function, being the three
functions operatively identical.

Input : The C set of all possible contexts
Output: BS set with the composed contextual blocks
BS=∅;
for (context ci ∈ C) do

/*Context elements retrieval*/ ;
CE[] ← getContextElements (ci);
/*Components retrieval*/ ;
E[] ← getEnableComponents (CE[]);
D[] ← getDisableComponents (CE[]);
R[] ← getRefreshComponents (CE[]);

Bi ← composeBlock (E[],D[],R[]);

optimizeBlock (Bi);

if (parseBlock (Bi)==’OK’) then
BS = BS ∪{Bi};

end
else

return WARNING(’Parse Error’)
end

end
return BS;

Procedure composeBlock(E[],D[],R[]) ;

B = ∅;
for (enable comp. e ∈ E[], disable comp. d ∈ D[]) do

attach (B.E, e);
attach (B.D, d);

end
B.R = min(R[])
return B;

/*Identical for Disable and Refresh*/ ;
Procedure getEnableComponents(CE[]) ;

EB = ∅;
i = 0;
for (ce ∈ CE) do

if (Context Enable Rel(ce) 6= ∅) then
EB[i] = Context Enable Rel(ce);
i++;

end

end
return EB;

pecially when different components contain the same clause
with different parameters that can be merged together in a
single clause. In the following Section an example is given
of such optimization on the SELECT clause. The last step
of the algorithm instructs the CM to inject the composed
contextual block into the middleware QueryParser compo-
nent using the parseBlock() function. The QueryParser is,
in fact, able to verify the syntactic and semantic validation
of the composed block and to raise a warning message in
case some inconsistencies are detected.

Runtime composition ⊕R. In the run-time approach, the
association of the partials with the context elements of the
CDT is the same as above. However, in this case the com-
position of a contextual block is carried out at run-time only
when its relative context is recognized as active by the mid-
dleware. Advantages and disadvantages are illustrated be-
low.

Differences between the ⊕D and ⊕R approaches. The
two proposed approaches show a trade-off that enables us
to advise their use in different situations. At design-time,
in fact, the designer has total control over each composed
block before its behavior is enacted; as a consequence, he or
she can still modify the composed blocks in case the require-
ments ask for particular attention. On the other side, many
contextual blocks will possibly be generated and controlled
by the designer even if their actual activation happens very
seldom, because this more static vision of the whole system
considers all the contexts at the same level of plausibility. At
run-time the system behaves with a more autonomic fash-
ion, but the designer cannot modify the composed contex-
tual blocks. In addition, performance must be kept under
control: more than one context can, in fact, be active si-
multaneously, and also the context switches may be very
frequent. The frequent on-line composition of several con-
text elements, maybe involving complex partials, could then
potentially slow down the whole system performances.

5. RUNNING EXAMPLE
In the following example we suppose that the designer has

associated to the Growth concept of the Phase dimension
the following partials, using the syntax of Section 4:

CREATE CONCEPT Growth WHEN date IS BETWEEN ’01-05-2012’

AND ’30-09-2012’

WITH ENABLE COMPONENT:

SELECT ph_value,humidity

WHERE sensor_group = ’north_sensors’

WITH REFRESH COMPONENT: 5s

The designer declares the Growth concepts using theWHEN
clause. Since grapes are typically planted and grow start-
ing from half summer until the first days of September,
the numeric observable date is used to characterize the
Growth symbolic observable. Using the WITH ENABLE
COMPONENT syntax the designer associates a query aim-
ing at sampling the pH value of the terrain as well as the
humidity of the air. Finally this query keeps only the sam-
pled records coming from the north sector of the vineyard
(WHERE clause). As last, the WITH REFRESH COM-
PONENT sets a refresh period of 5 seconds. Acting in the
same way, the designer assigns to the Overheat concept
the following partials:

CREATE CONCEPT Overheat WHEN temperature > 30

WITH ENABLE COMPONENT

SELECT MAX(temperature)

SAMPLING EVERY 20s

SET PARAMETER ’alarm’ = true;

WITH DISABLE COMPONENT:

SET PARAMETER ’alarm’ = false;

WITH REFRESH COMPONENT: 1s

The syntax is very similar to the previous associations.
The ENABLE COMPONENT features an Actuation Query
(AQ) which sets an alarm in case of overheat. The same
alarm is turned off again in the AQ specified within the
WITH DISABLE COMPONENT block. Before discussing
the composition of these two assignments into the final con-
textual block, it is worth underlining that the single associ-
ated queries are syntactically and semantically meaningful
and that the designer is not obliged to associate to a context
element every possible type of partial. As an example, the
first association lacks of the partial disable type, since the
WITH DISABLE COMPONENT syntax is missing. We fo-
cus now on the contextual block that is composed when the

vineyard is in the growth phase and there is an overheat risk.
In other words we are interested in the following context:

Monitoring Context ≡(Phase = ‘Growth‘)∧

(Risk = ‘Overheat‘)

The final contextual block will be composed starting from
the associations described before and according to the strat-
egy chosen (i.e.: combinatorially at design-time, or when the
Monitoring context is recognized as active at run time). The
final block will then be the following:

CREATE CONTEXT (Monitoring_Context)

ACTIVE IF Phase = ’Growth’ AND Risk = ’Overheat’

ON ENABLE (Monitoring_Context):

SELECT MAX(temperature),ph_value,humidity

WHERE sensor_group = ’north_sensors’

SAMPLING EVERY 20s

SET PARAMETER ’alarm’ = true;

ON DISABLE (Monitoring_Context):

SET PARAMETER ’alarm’ = false;

REFRESH EVERY 1s

The example features one simple optimization that is car-
ried out during composition. The Context Manager is, in
fact, able to detect that two different SELECT clauses (com-
ing from two different associations) must be composed to-
gether. Instead of simply appending one clause after the
other, their correspondent arguments are merged together
into a single SELECT clause. Finally it is worth noticing
that the refresh period is correctly chosen as the min{1s,5s}.

6. CONCLUSIONS
In this paper we described some advances on previous

work presented in [12] for providing a context-aware support
for pervasive system users.

In particular, we propose an automatic definition and
composition mechanism of context-aware sub-query blocks
aiming to cope with the combinatorial explosion of context
that can be generated from a simple CDT model.

Given the growing spread of anytime, anyplace connectiv-
ity for users, with RFID tags, wireless sensors and embedded
devices made transparent to the application and to the user
by sophisticated middleware, we believe pervasive systems
to be among the main challenges for personalization.

Future improvements will contemplate: a) a formal def-
inition of the composition operator constraints; b) how to
evaluate the consistence of a generated context-aware query;
c) a finer control of context concurrency and switching; d)
as well as its full-fledged application to wide-range projects.

Acknowledgments

This work was partially funded by the European Commis-
sion, Programme IDEAS ERC, Project 227977-SMSCom
and Industria 2015, Programma n◦ MI01 00091 SENSORI.

7. REFERENCES
[1] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,

D. Nicklas, A. Ranganathan, and D. Riboni. A survey
of context modelling and reasoning techniques.
Pervasive and Mobile Computing, 6(2):161 – 180,
2010. Context Modelling, Reasoning and Management.

[2] C. Bolchini, C. Curino, G. Orsi, E. Quintarelli,
R. Rossato, F. A. Schreiber, and L. Tanca. And what
can context do for data? Commun. ACM,
52(11):136–140, 2009.

[3] C. Bolchini, C. A. Curino, E. Quintarelli, F. A.
Schreiber, and L. Tanca. A data-oriented survey of
context models. SIGMOD Rec., 36:19–26, December
2007.

[4] C. Bolchini, E. Quintarelli, and L. Tanca. Carve:
Context-aware automatic view definition over
relational databases. Information Systems, Accepted
manuscript (unedited version available online:
12-MAY-2012).

[5] N. H. Cohen, A. Purakayastha, L. Wong, and D. L.
Yeh. iqueue: A pervasive data composition framework.
In Proceedings of the Third International Conference
on Mobile Data Management, MDM ’02, pages 146–,
Washington, DC, USA, 2002. IEEE Computer Society.

[6] A. Dey. Understanding and using context. Personal
Ubiquitous Comput., 5(1):4–7, 2001.

[7] P. Fahy and S. Clarke. Cass: Middleware for mobile,
context-aware applications. In Workshop on Context
Awareness at MobiSys 2004, June 2004.

[8] J. Hong, E. Suh, and S.-J. Kim. Context-aware
systems: A literature review and classification. Expert
Syst. Appl., 36(4):8509–8522, 2009.

[9] G. Judd and P. Steenkiste. Providing contextual
information to pervasive computing applications. In
Proc. of IEEE International Conf. on Pervasive
Computing and Communications (PerCom’03), Fort
Worth, Texas, USA, pages 133–142, 2003.

[10] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1):122–173, 2005.

[11] R. Reichle, M. Wagner, M. Khan, K. Geihs,
J. Lorenzo, M. Valla, C. Fra, N. Paspallis, and
G. Papadopoulos. A comprehensive context modeling
framework for pervasive computing systems. In
Distributed applications and interoperable systems,
pages 281–295. Springer, 2008.

[12] F. Schreiber, L. Tanca, R. Camplani, and D. Viganó.
Towards autonomic pervasive systems: the PerLa
context language. Electronic Proc. 6th NetDB, pages
1–7, 2011.

[13] F. A. Schreiber, R. Camplani, M. Fortunato,
M. Marelli, and G. Rota. Perla: A language and
middleware architecture for data management and
integration in pervasive information systems. IEEE
Trans. Software Eng., 38(2):478–496, 2012.

[14] M. Weiser. The computer for the 21st century.
SIGMOBILE Mob. Comput. Commun. Rev., 3:3–11,
July 1999.

