
Towards autonomic pervasive systems:
the PerLa context language

Fabio A. Schreiber
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Via Ponzio 34/5
20133 Milano

schreibe@elet.polimi.it

Letizia Tanca
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Via Ponzio 34/5
20133 Milano

tanca@elet.polimi.it

Romolo Camplani
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Via Ponzio 34/5
20133 Milano

camplani@elet.polimi.it

Diego Viganó
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Via Ponzio 34/5
20133 Milano

diego.vigano@mail.polimi.it

ABSTRACT

The property of context-awareness, inherent to a Pervasive
System, requires a clear definition of context and of how the
context parameter values must be extracted from the real
world. Since often the same variables are common to the
operational system and to the context it operates into, the
usage of the same language to manage both the application
and the context can lead to substantial savings in application
development time and costs. In this paper we propose a
context-management extension to the PerLa language and
middleware that allows for declarative gathering of context
data from the environment, feeding this data to the internal
context model and, once a context is active, acting on the
relevant resources of the pervasive system, according to the
chosen contextual policy.

Categories and Subject Descriptors

H.2 [Database Management]: Languages—Query Lan-
guages; H.3.4 [Systems And Software]; C.2 [Computer
Communication Networks]: Distributed Systems

General Terms

Languages

Keywords

Pervasive system, context-awareness, hybrid intelligence, con-
text management.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetDB’11, June 12, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0652-2/11/06 ...$10.00.

1. INTRODUCTION
Context-awareness is a property inherent to an autonomic

Pervasive System and requires a clear definition of what con-
text is and how the context parameter values can be ex-
tracted from the real world. Context can in fact be thought
of as “any information that can be used to characterise the
situation of an entity” [10]. Pervasive Systems deploy de-
vices which are spatially distributed and possibly mobile, in
order to monitor different kinds of physical phenomena for
application support; however, some of these same data can
also be used to detect the situation of the entities present
in the environment, that is, to characterise the context and
to provide the actual values for the context parameters. In-
deed, while context variables could be considered just as
all the other system variables (flat view), since many years
they have been acknowledged a special role in determining
the system behaviour [6]. Only if the network, or more cor-
rectly the language handling it, is able to manage the con-
text the sensors are related with, the relationship between
context and data can be correctly mastered. The literature
presents different approaches to context management in per-
vasive systems that will be presented in Section 2.
Differently from most of existing approaches, we separate
the Operational Pervasive System and its Context Manage-
ment System in two different layers, while embedding in the
same language the functionalities of both: context is anal-
ysed in terms of observable entities, which have some sym-
bolic representation within the system and some of which
correspond to numerical values gathered from the environ-
ment sensors. Gathering context data from the environment
requires a simple interface, possibly based on a declarative
approach [16, 21], which, on one side, interacts with the net-
work of highly heterogeneous physical devices and, on the
other, is correctly interfaced with the internal, symbolic rep-
resentation of context, based on a context model. A context-
aware database design methodology, a set of techniques and
tools for context-aware data querying have been developed
within the Context-ADDICT project [5]. According to this
approach, the internal symbolic observables are modelled as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55215227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

context dimensions and organised as a Context Dimension
Tree [6], or CDT for short. Some of these values (like the
user’s role or current interest topic) are gathered from pre-
vious interaction with the user, while some others can be
directly “read” as numerical values from the environment.
Examples of these values are the time of day or the GPS
coordinates and we call them numerical observables. Nu-
merical observables are gathered from the environment by
means of the declarative sensor query language PerLa1 [21,
22]. The fact that PerLa is declarative allows a very easy
integration between the activity of querying numeric observ-
ables and that of querying other observables like the role of
the system user or the current step of the workflow process.
In order to explain the concepts exposed in this paper we
shall use a running example where a wine production pro-
cess is to be monitored. The attention will be focused on the
growth and delivery phase of the produced wine, as well as
on some of the actors (farmer, oenologist and truck drivers)
that are involved in the process. The paper is then struc-
tured as follows: in Section 2, we discuss the current state
of the art in managing context-aware pervasive systems; in
Section 3 the CDT context model is presented. Then, af-
ter a short introduction to the PerLa project, we present
in Section 4 the extension to the language syntax used to
create and manage contexts. Sections 4.1 and 4.2 highlight
how the combined actions of the CDT model and the PerLa
language can be used to introduce context-awareness into
pervasive systems. Section 5 deals with the evaluation of
our proposal. Finally, conclusions and future work are dis-
cussed in Section 6.

2. RELATED WORK
Dealing with context-aware systems always requires to

separate different dimensions of analysis that concur in the
realisation of the final system:

• the context model employed [7];
• the software implemented to realise the system [14];
• the method used to query the system [13] (sometimes

called Context Query Language (CQL) [20])

Literature contains a vast number of context models clas-
sifications, for example [7, 4] and partially [3, 5]. In relation
to the software dimension, most of the implemented solu-
tions follow the distributed paradigm: exemplifying projects
of this kind are [1, 12]; on the contrary, a centralised ar-
chitecture is employed by project [11]. The last point of
analysis is represented by the CQL adopted to query the
system. A first approach is to extend existing languages
with an appropriate set of statements in order to support
context-awareness [2]. Another approach is represented by
the use of classical method calls directly on a dedicated mid-
dleware. This is partially the case of project [19], which also
offers the publish/subscribe paradigm for querying the sys-
tem. Taking into consideration the abstraction of the per-
vasive system as a database [16], others projects introduce
a relational (e.g.: SQL) intermediate layer [11, 15] (along
with appropriate mapping mechanisms [17]) or XML-based
query languages [18, 20]. RDF-based languages, such as [1,
12], have more recently delineated a fourth possible choice
in the language to be adopted.

1http://perlawsn.sourceforge.net

Figure 1: The CDT schema (for the wine production
process)

3. THE CDT MODEL
A key element in the design of context-aware systems is

the representation and management of the context itself. In
this section we briefly sketch the formalism (i.e.: the context
model [6, 5]) we adopt to model the environment where the
pervasive system is operating. The choice of the context is
a burden of the system designer who singles out the context
dimensions and concepts: the former are used to capture dif-
ferent characteristics of the environment, while the latter are
used to represent the admissible values that can be assumed
by the dimensions. Both dimensions and concepts can be
semantically enriched using attributes, that are parameters
whose values are provided at run-time. Moreover, the “tree”
term suggests that the designer can model the environment
using the preferred granularity, nesting more than one level
of dimensions with the unique restriction that every dimen-
sion can only have concept children and vice versa. This
requirement is clearly exposed in Figure 1, where we present
the context schema in the form of a Context Dimension Tree
(CDT) in its graphical notation for the wine monitoring ex-
ample introduced in Section 1. In particular we use black
nodes for the dimensions and white nodes for the concepts,
while attributes are represented using squared nodes.

We firstly describe the “actors” involved; for this purpose
we use the Role dimension whose possible concept nodes can
be Farmer, Oenologist and Driver. The second dimension,
which allows us to describe the various phases of the wine
production process, is the Phase dimension that can assume
the concepts Growth, Ageing and Transport. The third di-
mension is related to the risks to be kept under control, with
the two facets (concepts) of Overheat owing to exposure of
wine bottles to sunlight, and of Disease which can affect
the grapes. In the latter case, we are interested in the dis-
ease Type and in the amount of affected surface (Affected
hectares) sub-dimensions; however the domains of the val-
ues for these dimensions are too large to be explicitly enu-
merated by means of concept nodes, so we can use the at-
tributes $ID and $Square_meters whose values will be pro-
vided at run-time. Once the environment has been modelled
using the CDT it is possible to formalise the context notion.
In order to denote that a dimension has assumed the value
of one of its possible children we use the following formalism
Dimension = V alue, where Dimension represents a CDT
dimension and V alue can be either a concept node or an at-
tribute node according to our notation. It is now possible to
formalise a context instance as a conjunction of propositions
Context ≡

∧
i,j
(Dimensioni = V aluei,j). As an example

Figure 2: Contexts declaration: graphical notation

we consider the wine production process CDT and two possi-
ble contexts. The Growth Monitoring context is used in the
preliminary phase of the production process: temperature
and humidity (see Section 4.1) are critical attributes that
must be kept under constant control by the farmer when
the grapes are affected by certain diseases. Successively the
Transport Monitoring context is employed during the trans-
port phase. The bottled wine must not be kept under direct
sunlight for more than a certain amount of time in order
to avoid overheat and a consequent alteration of the wine
flavour. Formally:

Growth Monitoring ≡ (Role = Farmer)

∧(Phase = Growth) ∧ (Disease.T ype = 3)

∧(Disease.AffectedHectares = 200)

Transport Monitoring ≡ (Role = Driver)

∧(Phase = Transport)∧ (Risk = Overheat)

Figure 2 shows the graphical notation that can be adopted
to visually represent the defined context. From the same fig-
ure it clearly emerges that both context instances are com-
posed by a subset of the initial CDT schema elements shown
in Figure 2a). It is worth noticing that not all possible sub-
sets are valid contexts. This is the case of Figure 2b) where
the dimension Role assumes the values Driver and Farmer

simultaneously (the children concepts of one dimension are
always to be instantiated in mutual exclusion).

Once the context schema has been defined in terms of
symbolic observables (e.g. the Overheat risk), it is possible
to analyse how these can be mapped to numeric observ-
ables, which are instantiated by retrieving all the necessary
information from the pervasive system. The PerLa system,
which is presented in the next section, allows to perform this
important task in an efficient way.

4. MANAGING CONTEXT USING PERLA
As extensively presented in [21, 22], PerLa is a framework

to configure and manage modern pervasive systems and,
in particular, wireless sensors networks. PerLa adopts the
database paradigm of the pervasive system: such approach,
widely adopted in the literature [16, 9], is data-centric and
relies on a query language using an SQL-like metaphor.

PerLa queries allow to retrieve data from the pervasive
system, to prescribe how the gathered data have to be pro-
cessed and stored and to specify the behaviour of the devices.
In particular PerLa supports three types of queries:

/∗High l e v e l query ∗/
CREATE OUTPUT STREAM Monitoring

(temperature FLOAT, humidity FLOAT,
locat ion X FLOAT, l o c a t i on y FLOAT)

AS LOW:
/∗Low l e v e l query ∗/
EVERY ONE
SELECT temperature , humidity ,

l ocat ion x , l o c a t i on y
SAMPLING EVERY 1 m

EXECUTE IF EXISTS (temperature) AND
is InV ineyard (locat ion x , l o c a t i on y)

REFRESH EVERY 10m

Table 1: A PerLa query example

1. Low Level Queries (LLQs) define the behaviour of ev-
ery single or of a homogeneous group of nodes; in par-
ticular LLQs specify the data selection criteria, the
sampling frequency and the elaboration to be performed
on sampled data.

2. High Level Queries (HLQs) define the high level elab-
oration involving data streams coming from multiple
nodes. Such queries are equivalent to SQL operations
on data streams.

3. Actuation Queries (AQs) provide the mechanisms to
change parameters of the devices or to send commands
to actuators.

A first example of a typical PerLa query for gathering data
from the field is shown in Table 1 at the top: most of the
keywords are self-explaining and we will focus in details on
the grammar in Section 4.2 (for the complete EBNF defini-
tion refer to the final system report2). This brief example
highlights how the three different types of queries concur in
the composition of a final PerLa query. Furthermore, the
other fundamental PerLa component is a middleware whose
architecture exposes two main interfaces: a high-level in-
terface, which allows query injection and a low-level inter-
face that provides plug&play mechanisms to handle devices
and energy savings [8]. However, the PerLa language, in
its initial version, does not support the definition and the
management of context. In this paper we present an exten-
sion of the PerLa language and middleware that overcomes
this limitation by introducing a query-based context man-
agement system relying on the CDT context model. Our
work has two main objectives: first of all the language is
to be extended in order to introduce, create and maintain
the CDT formalism into PerLa. On one hand this extension
shall enable the designer to declare the desired contexts on
the CDT, while on the other hand it shall provide the possi-
bility to define the actions that have to be performed upon
context activation. In parallel, the middleware architecture
is to be extended in order to manage the CDT structure, to
verify context statuses and to physically perform the corre-
sponding actions. Section 4.1 focuses on the language ex-

2F. A. Schreiber, R. Camplani, M. Fortunato, M. Marelli,
and G. Rota - Design of PerLa, a declarative language and a
middleware architecture for pervasive systems - ARTDECO
R.A.11b, DEI 2010.9 in http://perlawsn.sourceforge.net

tension, called Context Language (CL). The middleware
enhancements, consisting in a Context Manager (CM)
entity, will be discussed in Section 4.2.

4.1 The Context Language
The syntax of the CL has been divided into two parts,

called CDT Declaration and Context creation:

4.1.1 CDT Declaration

This part allows the user to specify the CDT, i. e. all the
application-relevant dimensions and values they can assume.
The syntax is the following:

CREATE DIMENSION <Dimension Name>
[CHILD OF <Parent Node>]
[CREATE ATTRIBUTE $<Attribute Name >] |
{CREATE CONCEPT <Concept Name>

WHEN <Condition>
[CREATE ATTRIBUTE $<Attribute Name >]∗
[EVALUATED ON <Low Level Query >]}∗

The CREATE DIMENSION clause is used to declare that
a new dimension must be added to a CDT. If no father is
specified the dimension is meant to be a child of the tree
root. Otherwise the dimension can be considered as a child
of the node specified within the CHILD OF clause. Once a
dimension has been declared, it is possible to specify the val-
ues that the dimension can assume, using the CREATE AT-
TRIBUTE or the CREATE CONCEPT/WHEN pair. For
each pair the designer must specify the name and the condi-
tion for assuming the specified values by means of numeric
observables that can be measured from the environment.
When, instead, the design requires the presence of attributes
the CREATE ATTRIBUTE clause must be used, using the
$ sign as a prefix before the name of the attribute, meaning
that its value will be supplied by the application at run-
time. We postpone the explanation of the EVALUATED
ON clause to Section 4.2, where it plays a fundamental role.
If we consider the CDT of Section 3 for the wine production
process, we can thus use the following set of statements:

CREATE DIMENSION Role
CREATE CONCEPT Farmer

WHEN g e t u s e r r o l e ()= ’ farmer ’
CREATE CONCEPT Oeno log i s t

WHEN g e t u s e r r o l e ()= ’ o eno l og i s t ’
CREATE CONCEPT Driver

WHEN g e t u s e r r o l e ()= ’ d r iv e r ’
CREATE DIMENSION Risk

CREATE CONCEPT Disease
WHEN g e t i n t e r e s t t o p i c ()= ’ d i s ease ’

CREATE CONCEPT Overheat
WHEN temperature > 30
AND br igh tnes s >0.75;

CREATE DIMENSION Type
CHILD OF Disease
CREATE ATTRIBUTE $id

CREATE DIMENSION Af f e c t ed h e c t a r e s
CHILD OF Disease
CREATE ATTRIBUTE $square meters

CREATE DIMENSION Phase
CREATE CONCEPT Growth

WHEN get phase ()= ’ growth ’
CREATE CONCEPT Ageing

WHEN get phase ()= ’ ageing ’

CREATE CONCEPT Transport
WHEN get phase ()= ’ transport ’

This CDT is declared using an important feature of the
PerLa language: the get_user_role(), get_phase() and
get_interest_topic() functions are employed to retrieve
context information that cannot be deduced from sensors
readings, but has to do with other aspects of the applica-
tion. This information is typically gathered from some ex-
ternal XML source or a database. Although through a sim-
ple example, this clearly highlights how PerLa supports the
passage from symbolic to numeric observable: the Overheat
symbolic value is in fact defined in terms of the Temperature
and Brightness physical quantities (thus numeric observ-
ables) that can be sampled from the environment using very
simple queries.

4.1.2 Context creation

This section allows the user to declare a context on a de-
fined CDT and control its activation:

CREATE CONTEXT <Context Name>
ACTIVE IF <Dimension>=<Value>

[AND <Dimension>=<Value>]∗
ON ENABLE <PerLa Query>
ON DISABLE <PerLa Query> /∗one−shot only ∗/
REFRESH EVERY <Period>

The CREATE CONTEXT statement is used to create a
context instance in PerLa and allows to associate a unique
name to it. The ACTIVE IF statement is used to translate
the Context ≡

∧
i,j
(Dimensioni = V aluei,j) statement of

Section 3 into PerLa. This statement is fundamental for the
middleware in order to decide if a context is active or not.
The actions that must be performed in both these situations
must be specified using the ON ENABLE clause and are ex-
pressed using any type of query exposed in Section 4. The
ON DISABLE clause can be coupled only with “one-shot”
queries, that is, queries that are executed only once upon
deactivation of a context, and thus do not create conflicts
with the queries enabled by the next active contexts. The
middleware will also perform the necessary controls accord-
ing to the condition specified in the REFRESH clause that
completes the syntax.
In the next examples we show how context management
statements and queries/actuation commands on the target
system are uniformly mixed in order to achieve a context-
aware behaviour. For the Growth Monitoring context we
can thus use the listing 1:

Listing 1: Growth monitoring example
CREATE CONTEXT Growth Monitoring
ACTIVE IF phase = ’ growth ’ AND ro l e =’ farmer ’

AND Disease . Type=3
AND Disease . A f f e c t ed Hectare s = 200

ON ENABLE:
SELECT humidity , temperature
WHERE humidity > 0 AND temperature > 0
SAMPLING EVERY 6 h
EXECUTE IF EXISTS humidity , temperature

AND l o c a t i o n=’vineyard ’
ON DISABLE:

DROP Growth Monitoring ;
REFRESH EVERY 1 d ;

Figure 3: Middleware architecture with the CM
component

In this example, after creating the context, a very short LLQ
is issued: the SELECT clause specifies that the humidity
and temperature values must be retrieved four times a day
(SAMPLING EVERY clause), while the WHERE clause al-
lows to filter the sampled values (in this case we discard false
readings). The EXECUTE IF finally deploys the query only
on those devices that host both the humidity and temper-
ature sensors and that are located into the vineyard where
the farmers are working. The Transport Monitoring context
can be defined as:

Listing 2: Transport monitoring example
CREATE CONTEXT Transport Monitor ing
ACTIVE IF phase = ’ transport ’

AND ro l e =’ d r iv e r ’
AND Risk=’overheat ’

ON ENABLE:
SELECT temperature , gp s l a t i t ud e ,

gp s long i tude
WHERE temperature > 30

SAMPLING EVERY 120 s
EXECUTE IF l o c a t i o n = ’ t ruck depar t ing zone ’
SET PARAMETER ’ alarm ’ = TRUE;

ON DISABLE:
DROP Transport Monitor ing ;
SET PARAMETER ’ alarm ’ = FALSE;

REFRESH EVERY 24 h ;

This example contains a similar LLQ, but employs an ac-
tuation query (AQ), introduced by the SET PARAMETER
clause. This AQ is used to activate an alarm in order to
signal that the trucks are currently under the risk of over-
heating. The LLQ, except for the attributes to be sampled,
is very similar to the one adopted for the previous context.

4.2 The Context Manager
In this section we introduce the enhancements to the in-

ID temperature brightness

1 28 0.60
3 31 0.71
4 33 0.80

Table 2: Table for the Overheat dimension

ternal structure of the middleware, in order to support the
Context Language. The new architecture is characterised by
the introduction of a Context Manager (CM) as exposed
in Figure 3. The CM is in charge of: 1) creating and main-
taining the CDT; 2) detecting which contexts are active or
not in a precise moment; 3) performing the correct actions
expressed by the user according to context statuses. In the
following we analyse these steps.

4.2.1 Creation of the CDT

During this phase all the necessary numeric observables
(declared using the CREATE CONCEPT/WHEN clauses)
are retrieved, and the EVALUATED ON clause becomes
important. In fact, as long as this clause is unemployed, the
CM executes a series of independent LLQs in order to re-
trieve the necessary information from the pervasive system.
The designer could be interested in modifying this default
behaviour, especially when the environment changes rapidly
and the same observable is employed in different concepts
(leading thus to some inconsistencies using different LLQs).
This clause is useful also to introduce some optimisations
(e.g.: discarding some unwanted devices). For example, on
the Overheat dimension:

CREATE CONCEPT Overheat WHEN temperature > 30
AND br i gh tn e s s > 0 . 7 5 ;

EVALUATED ON:
SELECT temperature , b r i gh tn e s s
EXECUTE IF l o c a t i o n=’ t ruck depar t ing zone ’

AND battery >0.7

In this example the observables temperature and bright-

ness are sampled simultaneously using one single query (in-
stead of two independent LLQs). Moreover the query is
executed only on those devices that are located in the truck
departing zone and whose battery power is enough to oper-
ate efficiently (EXECUTE IF clause). Once all the results
are available (independently of the presence of the EVALU-
ATED ON clause) the system can create a series of tables
(one for each dimension with concepts nodes) that contain a
column for every attribute expressed in the CREATE CON-
CEPT/WHEN clauses. The table reports also the IDs of the
devices that were taken into account during the retrieval
phase. Every table entry then represents the actual value
(sampled from the environment) and the device that physi-
cally produced it. Table 2 shows the results returned by the
computation of theEVALUATED ON clause for the Over-

heat dimension, where the 1 3 and 4 sensors are involved.
Once all the necessary information has been gathered it is

possible to evaluate every condition expressed by theWHEN
clauses used during the CDT declaration. In particular, sim-
ply looking up every table, the CM assigns to a CDT con-
cept node the ID(s) of those devices whose sampled values
satisfy the condition expressed by the WHEN clause of the
concept definition. When this phase is concluded the sys-
tem knows which devices are in the situation described by
the concepts of every dimension of the CDT. For example,

referring to the Overheat in Table 2, the CM can deduce
that only sensor number 4 is detecting the risk of overheat
since both temperature>30 and brightness>0.75 conditions
are true simultaneously, while this is not the case of sensors
number 3 and 1. However it might happen that a WHEN
clause be not satisfied by any of the sampled attributes: in
this case no ID can be associated to the corresponding CDT
concept. Analogously an ID can appear in more than one
concept (as long as they are not children of the same dimen-
sion): this is the case of modern “intelligent” sensors that
can sample more than one attribute simultaneously. With
similar computations the CM also selects the concepts that
correspond to the results calculated by the static functions,
such as get_user_role() or get_phase().

4.2.2 Context detection

The purpose of this phase is to discover if one of the de-
clared contexts has become active or has been deactivated.
It must be remembered that a context is active if the di-
mensions that define it assume the values specified by the
Context ≡

∧
i,j
(Dimensioni = V aluei,j) statement. Con-

sidering also the results of the static functions, the system
recognises as active all the contexts whose CDT concepts
contain a not-empty devices list. In fact, from the CM
point of view, if one ID has been associated with a concept
it means that, for at least one device, a CDT dimension is
currently assuming that value. If this situation is true for
every < Dimension >=< V alue > used to define a context
then the environment is exactly in the situation expressed
by the context, and can be considered as active.

4.2.3 Context-aware behaviour

Once a context has been recognised as active, the CM sim-
ply injects the query specified by the ON ENABLE clause
into the middleware dedicated components [21]. In the ex-
ample shown in listing 1, the context activation ”triggers”
the node sampling (i.e., of humidity and temperature sen-
sors). The execution flow equals the one of any other query
that is manually injected into the system, and is thus com-
pletely controlled and managed by the middleware dedicated
components.

5. FINAL REMARKS
As mentioned in Section 2, context management consists

of three different aspects (i.e: Context model, CQL, middle-
ware). In the following, we focus on evaluating the Mid-
dleware and the CQL adopted, while detailed comparisons
between context models can be found in [7, 5, 3].

Differently from the other projects presented in Section 2,
the PerLa language approaches the problem in a novel way
introducing a unique CQL that allows to gather data context
at the preferred granularity and to perform actions on the
pervasive system simultaneously by relying on the middle-
ware. Our proposed solution has two main advantages: (i)
by adopting a database metaphor, which decouples the mid-
dleware from the high level applications (which are going to
exploit the pervasive system), it is possible to use the net-
work independently for detecting context and for retrieving
application data; (ii) the granularity of the language allows
to define precisely context changes, as well as dictate any
changes on the desired behaviour of the system.

We can evaluate quantitatively the system scalability in
terms of nodes: as far as the sensors readings are concerned,

Figure 4: PerLa scaling capabilities, from [22]

a series of stress tests were performed in [22], mainly based
on the execution time w.r.t. the number of nodes totally de-
ployed. The results exposed in Figure 4 confirm that PerLa
scales linearly with the number of nodes deployed. The in-
troduction of context management in PerLa does not change
the scalability feature: in fact, the detection of an active con-
text requires (i) to retrieve sensors readings and (ii) to look
up every table associated with the CDT dimensions. How-
ever, looking up every table requires a quantity of time that
is linear with the number of CDT dimensions which define
a valid context, and to each CDT dimension is normally as-
sociated one (or very few) node(s). In its totality the whole
process (readings and context detection) thus scales linearly
with the devices number.

6. CONCLUSIONS AND FUTUREWORK
In this paper we presented an extension to the PerLa sys-

tem in order to support the definition and management of
contexts, using the Context Dimension Tree as a formalism
to model the environment. This effort has yielded a Context
Language, as well as a set of enhancements to the middleware
internal structure, including the Context Manager which op-
erates on the contexts defined using the new language and
performs user defined actions accordingly. The next steps of
our work contemplate: (i) context conflict management: the
system is, in fact, unable to autonomously select between
contexts if more than one is currently active; (ii) context
schema evolution and reconciliation among different appli-
cations within the same domain. The purpose of our future
works is to investigate how to implement such features in
PerLa and to prevent and detect context conflicts.

7. ACKNOWLEDGEMENTS
This work has been funded by the European Commission

Programme IDEAS-ERC Project 227077-SMScom. We also
gratefully acknowledge the assistance of Ing. Guido Rota in
developing the PerLa middleware.

8. REFERENCES

[1] J. Euzenat, J. Pierson and F. Ramparany. Dynamic
context management for pervasive applications,
volume 23. Cambridge Journals, 2008.

[2] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,
and M. Perscheid. A comparison of context-oriented
programming languages. In International Workshop
on Context-Oriented Programming, COP ’09, pages
6:1–6:6, New York, NY, USA, 2009. ACM.

[3] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems. International Journal of Ad
Hoc and Ubiquitous Computing, 2(4):263–277, June
2007.

[4] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,
D. Nicklas, A. Ranganathan, and D. Riboni. A survey
of context modelling and reasoning techniques.
Pervasive Mob. Comput., 6:161–180, April 2010.

[5] C. Bolchini, C. Curino, E. Quintarelli, and
F. Schreiber. Context information for knowledge
reshaping. International Journal of Web Engineering
and Technology, 5(1):88–103, 2009.

[6] C. Bolchini, C. A. Curino, G. Orsi, E. Quintarelli,
R. Rossato, F. A. Schreiber, and L. Tanca. And what
can context do for data? Commun. ACM, 52:136–140,
November 2009.

[7] C. Bolchini, C. A. Curino, E. Quintarelli, F. A.
Schreiber, and L. Tanca. A data-oriented survey of
context models. SIGMOD Rec., 36:19–26, December
2007.

[8] C. Cappiello and F. Schreiber. Quality- and
energy-aware data compression by aggregation in wsn
data streams. In Pervasive Computing and
Communications, 2009. PerCom 2009. IEEE
International Conference on, pages 1 –6, march 2009.

[9] D. Chu, A. Tavakoli, L. Popa and J. Hellerstein.
Enterely declarative sensor network systems. In Proc.
VLDB ’06, pages 1203–1206, 2006.

[10] A. Dey. Understanding and using context. Personal
Ubiquitous Comput., 5(1):4–7, 2001.

[11] P. Fahy and S. Clarke. CASS - a middleware for
mobile context-aware applications. In Workshop on
Context Awareness, MobiSys, 2004.

[12] T. Gu, H. Pung, and D. Zhang. A service-oriented
middleware for building context-aware services. J.
Netw. Comput. Appl., 28(1):1–18, 2005.

[13] P. Haghighi, A. Zaslavsky, and S. Krishnaswamy. An
evaluation of query languages for context-aware
computing. In Database and Expert Systems
Applications, 2006. DEXA ’06. 17th International
Conference on, pages 455 –462, 2006.

[14] J. Hong, S. E., and K. S. Context-aware systems: A
literature review and classification. Expert Syst. Appl.,
36(4):8509–8522, 2009.

[15] G. Judd and P. Steenkiste. Providing contextual
information to pervasive computing applications. In
Pervasive Computing and Communications, 2003.
(PerCom 2003). Proceedings of the First IEEE
International Conference on, pages 133 – 142, 23-26
2003.

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: an acquisitional query processing system for
sensor networks. ACM Trans. Database Syst.,
30(1):122–173, 2005.

[17] T. McFadden, K. Henricksen, and J. Indulska.
Automating context-aware application development.
In In: UbiComp 1st International Workshop on

Advanced Context Modelling, Reasoning and
Management, pages 90–95, 2004.

[18] D. Nicklas, M. Grossmann, J. Minguez, and
M. Wieland. Adding high-level reasoning to efficient
low-level context management: A hybrid approach. In
Pervasive Computing and Communications, 2008.
PerCom 2008. Sixth Annual IEEE International
Conference on, pages 447–452.

[19] H. Peizhao, J. Indulska, and R. Robinson. An
autonomic context management system for pervasive
computing. In Pervasive Computing and
Communications, 2008. PerCom 2008. Sixth Annual
IEEE International Conference on, pages 213 –223,
mar. 2008.

[20] R. Reichle, M. Wagner, M. Khan, K. Geihs, M. Valla,
C. Fra, N. Paspallis, and G. Papadopoulos. A context
query language for pervasive computing environments.
In Pervasive Computing and Communications, 2008.
PerCom 2008. Sixth Annual IEEE International
Conference on, pages 434 –440, 2008.

[21] F. A. Schreiber, R. Camplani, M. Fortunato,
M. Marelli, and F. Pacifici. Perla: A data language for
pervasive systems. Pervasive Computing and
Communications, IEEE International Conference on,
pages 282–287, 2008.

[22] F. A. Schreiber, R. Camplani, M. Fortunato,
M. Marelli, and G. Rota. Perla: A language and
middleware architecture for data management and
integration in pervasive information systems. IEEE
Transactions on Software Engineering, (PrePrints),
2011.

