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Abstract: Deriving a person’s energy expenditure accurately forms the foundation for tracking physical activity levels across
many health and lifestyle monitoring tasks. In this work, we present a method for estimating calorific expenditure from combined
visual and accelerometer sensors by way of an RGB-Depth camera and a wearable inertial sensor. The proposed individual-
independent framework fuses information from both modalities which leads to improved estimates beyond the accuracy of
single modality and manual metabolic lookup table (MET) based methods. For evaluation, we introduce a new dataset called
SPHERE_RGBD+Inertial_calorie, for which visual and inertial data is simultaneously obtained with indirect calorimetry ground
truth measurements based on gas exchange. Experiments show that the fusion of visual and inertial data reduces the estima-
tion error by 8% and 18% compared to the use of visual only and inertial sensor only, respectively, and by 33% compared to a
MET-based approach. We conclude from our results that the proposed approach is suitable for home monitoring in a controlled
environment.

1 Introduction

The term “energy expenditure” refers to a human’s calorific uptake
over time, which is one commonly used single metric to quantify
physical activity levels. It is an important determinant in under-
standing the development of chronic diseases, such as obesity and
diabetes. Current evidence-based guidelines [1] indicate that people
who are regularly physically active have a 20% to 40% lower risk
of developing conditions such as cardiovascular disease and type 2
diabetes than those who are inactive, and suggest that adults should
accumulate at least 150 minutes of moderate intensity physical activ-
ity each week or 75 minutes of vigorous activity, or a combination
of the two. Most research into estimating and understanding calorific
expenditure focuses on coarse energy totals over longer time seg-
ments or relates to specific activities only, such as walking and
running, which generally occur outside the home.

Yet, very little attention has been paid on how activities of nor-
mal daily living in an indoor environment can be quantified and
understood in terms of energy expenditure. Traditionally, physical
activity levels have been measured in metabolic equivalents of task
(MET) [2], where a fixed value is assigned to each activity, e.g. 1
MET corresponds to energy expended at rest. However, the method
is highly unreliable due to the fact that the activities are monitored
using self-report approaches, such as questionnaires and occasional
clinical check-ups.

There are various approaches that reliably estimate human energy
expenditure via respiratory gas analysis, including both direct and
indirect methods. Direct calorimetry measures, such as a sealed
respiratory chamber [3], produce accurate outputs, but require a
laboratory-based environment. Indirect calorimetry, on the other
hand, measures energy expenditure based on inspired and expired
respiratory gas flows, volumes and concentrations of oxygen con-
sumption and carbon dioxide production. Some of these measure-
ment devices are portable, less invasive and can produce accurate
readings. They form the measurement standard for non-stationary
scenarios where the person can move freely. Nevertheless, partici-
pants in experiments are required to carry gas sensors and wear a
breathing mask [4].

Recently, with an increasing number of wearable devices becom-
ing available, approximating the energy expenditure using inertial

sensors has become a popular monitoring choice due to its low cost,
low energy consumption, and data simplicity. Acceleration reflects
a relation between motion and energy expenditure, thus tri-axial
accelerometers are the most broadly used inertial sensors [5]. Recent
studies show that more sensors could be involved in the task: breath
rate, chest and arm skin temperature also show the correlation with
energy expenditure via estimating the oxygen consumption [6]. The
data could be obtained by a heart rate monitor and thermometers.

Vision-based systems, as alternative approximative sensors, do
not require the wearing of extra devices. In fact, they are already
a key part of home entertainment systems today [7], where RGB-
Depth sensors allow for a rich and fine-grained analysis of human
activity for purposes such as gaming within the field of view. Recent
advances in computer vision have now opened up the possibility
of integrating these devices seamlessly into home monitoring and
assisted living systems [8–10].

Simultaneous utilisations of visual and inertial sensors are not
common today, but are receiving growing attention in various
areas, including action recognition [5], gesture recognition [11],
robotics [12], augmented/virtual reality [13], and assistive technolo-
gies applications, such as fall detection [14], food preparation [15]
and in a general ambient assisted living system [16]. Although
employing multi-modal sensors has the advantage of complement-
ing shortcomings of individual modalities, wearing a multitude of
sensors can cause user acceptance issues.

With this in mind, in this paper we propose a framework for
estimating energy expenditure in living environments based on a
non-intrusive RGB-Depth visual sensor and two inertial sensors -
worn on the wrist and waist - backed up in experiments by simul-
taneously taken indirect calorimetry measurements based on the
measurement of oxygen consumption and carbon dioxide produc-
tion for an accurate ground truth provision. This is a new application
and to the best of our knowledge no dataset of a similar setup with
reliable and accurate ground truth exists. Thus, in order to quantify
the performance of the proposed system, we present a new dataset,
SPHERE_RGBD+Inertial_calorie, for calorific expenditure estima-
tion collected within a home environment. The dataset contains 11
common household activities performed over up to 20 sessions, last-
ing up to 30 minutes for each session, in each of which the activities
are performed continuously. The experimental setup consists of an
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RGB-Depth Asus Xtion camera mounted at the corner of a living
room, two accelerometer sensors and a COSMED K4b2 [4] indi-
rect calorimeter for ground truth measurement (see Figure 3). The
SPHERE_RGBD+Inertial_calorie dataset is publicly released ∗.

This article is built upon our recent work in [17–19], with signif-
icant extensions and improvements. [17] introduced a fusion frame-
work for recognising human daily activity using visual and inertial
sensors. The work did not address the issue of energy expendi-
ture estimation. [19] proposed a framework for calorific expenditure
estimation using only a visual sensor, thus, there was no sensor
fusion involved. In [18], we presented a system which allows real-
time prediction for activity intensity levels, relying on light-weight
bounding box features. This makes the method unable to produce
precise calorific expenditure values. In this work, we have improved
the feature representation for both inertial and visual sensor data by
considering spatial and temporal information at the same time, and
investigated both early and late fusion approaches of the data from
these sensors. The key contributions of this work are: (a) We propose
a first-ever framework for the estimation of calorific expenditure
from a RGB-Depth sensor and inertial wearable sensors. There is
no work published on visual-inertial energy expenditure estimation,
there being only very few works that offer purely vision-based esti-
mation [18, 20, 21]. (b) We improve the feature representation for
both inertial and visual features in the previous fusion framework
in [17] by extracting rich, multi-level information to give improved
estimation accuracy. (c) We introduce a new dataset, linking more
than 10 hours of RGB-Depth video data and inertial sensor data
to ground truth calorie readings from indirect calorimetry based on
gas exchange. (d) We present a comparative study on the utility of
both visual and inertial data when estimating energy expenditure
in a living environment. The visual sensor and inertial sensors are
evaluated individually first, followed by an evaluation of two fusion
approaches.

The remainder of the paper is organized as follows: Section 2
presents the background and work related to our study. Section 3
describes the proposed framework for estimating energy expenditure
from RGB-Depth and inertial sensors alone, as well as in fusion.
The experimental setup and the results are presented in Section 4,
followed by a discussion and our conclusions in Section 5.

2 Related Work

2.1 Inertial Sensors

Acceleration, angular velocity, and rotation signals from wearable
devices have been used for human action recognition [22], and are
popular in healthcare-oriented applications, such as in fall detec-
tion systems [23] and medication adherence monitoring systems
[24]. Inertial sensors can offer particularly low-cost and ubiquitous
monitoring solutions for physical activities. Techniques that can con-
trol computational complexity, power consumption, and improve the
unobtrusiveness of the wearable computers [25] are applicable to
many systems including the one at hand. Here, we firstly discuss
inertial sensor feature extraction methods described in the literature,
followed by an outline of existing models of energy expenditure
estimation based on them.

Feature Representation. Different features extracted from inertial
sensor devices have been considered ranging from raw signal sam-
ples to high-level descriptors. Raw time series data from accelerom-
eters is most often provided as triples of scalars, where each scalar
corresponds to acceleration in one of three orthogonal spatial dimen-
sions. The same fundamental structure applies to angular velocity
signals and orientation signals of three directions. There is no com-
putational burden associated with feature extraction when the raw
data is used.

However, raw data may not expose enough discriminative struc-
ture to achieve high performance on specific classification tasks.

∗The dataset is available online at http://doi.org/cc5k

Instead, statistical features may be extracted from each of the three
axes, where sensor signal sequences are often partitioned into tempo-
ral windows over which features are generated. All features extracted
from a temporal window are then concatenated to form a single
combined descriptor vector.

Commonly used features include the first- and second-order
statistics, namely the mean and variance [26]. In [17], apart from
these commonly used features, correlation measures between each
axes pair are also extracted. Basic statistical measures are computa-
tionally efficient and are able to capture structural patterns in inertial
data. The feature descriptor can be further quantised into a number of
codewords, such as in [27]. Approaches based on deep learning are
currently being explored to create more generalised learning meth-
ods that generate features directly from the input data and promise
to optimise performance further [28].

Energy Expenditure Estimation. The first automatic methods for
inertial energy expenditure estimation [29] were count-based esti-
mation systems applied by fitting a single regression model to all
the data regardless of what activity was being performed. However,
systems that map from a single wearable to calorie values strug-
gle to accurately estimate the intensity of physical activity across
a range of actions. For example, some actions involving only upper
or lower body movements are difficult to be recognised via a single
wearable device, and therefore a high estimation error [30] occurs.
Different activities may require different models to represent them.
Activity-specific methods split the estimation process into two steps,
where activity groups are detected and classified first, and only then
an activity-specific model is applied to estimate energy expenditure.
MET lookup tables are the most common approach to perform the
latter, where a static MET value is assigned from a compendium on
physical activities [2] to each one of the clusters of activities [31].
However, METs-based approaches neglect any transitional effects of
activities (continued calorie expenditure after rigorous activity has
finished), and they overlook the fact that even the activities in same
cluster can be performed at varying intensities, for example, walking
at different speeds, or body exercise with different intensity.

An attempt to model the transition between activities was pro-
posed in [32], where an accelerometer and a heart rate sensor were
used and the transition between sedentary, household activities and
walking were modelled. The work in [33] shows that by using
data from multiple inertial sensors one can more accurately predict
energy expenditure, although the limitations of wearable devices are
considerable particularly with respect to accuracy as emphasised in
[17].

Accelerometer feature descriptors are often formed within a tem-
poral window. This brings out another concern that the window sizes
are set usually at less than 10 seconds in existing works [32][6]. The
length of window would significantly affects the results. It should
be short enough to recognise activities as local temporal information
are more descriptive, but long enough to predict calorie values since
current energy expenditure strongly depends on previous activity
intensity level.

2.2 Visual Sensors

Visual sensor based techniques have emerged over recent years
for which there exists a significant body of literature describing
the inference of activities from 2D colour intensity imagery [34]
Meanwhile, the increasing availability of depth-measuring sensors,
especially the introduction of the Microsoft Kinect, has generated
an opportunity for utilizing depth in conjunction with traditional
RGB camera data allowing for richer and more fine-grained anal-
ysis of human activity [7]. Applying computer vision techniques
to help with the diagnosis and management of health and wellbe-
ing conditions has gained significant momentum over the last years
[35]. However, studies on energy expenditure using visual sensors
have been relatively limited. Our work explores this field further and
builds on several relevant subject areas in computer vision.
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Visual Feature Representation. The visual trace of human activity
in video forms a spatio-temporal pattern. To extract relevant proper-
ties from this for the task at hand, one aims at compactly capturing
this pattern and highlighting important aspects related to the prop-
erties of interest. Assuming that both body configuration and body
motion [36] are relevant to infer calorific uptake, the pool of poten-
tial features is large - ranging from local interest point configurations
[37], over holistic approaches like histograms of oriented gradients
and histograms of motion information [17], to convolutional neural
network features [38].

Motion information in the first place could also be recovered in
various ways, e.g. from RGB data using optical flow or from depth
data using 4D surface normals [39]. Whilst a composition of these
features via concatenation of per-frame descriptors is straight for-
ward, this approach suffers from the curse of dimensionality and
unaffordable computational cost. Sliding window methods [40], on
the other hand, can limit this by predicting current values only from
nearby data within a temporal window. Further compaction may be
achieved by converting large feature arrays into a single, smaller vec-
tor with a more tractable dimension count via, for instance, bags of
visual words [41], Fisher vectors [42], time series pooling [43], or
the features extracted from convolutional neural networks [44]. In
summary, the challenge of feature representation will require cap-
turing visual aspects relevant to calorific expenditure, whilst limiting
the dimensionality of the descriptor.

Activity Recognition. There exists a significant body of litera-
ture describing the inference of activities from 2D colour intensity
imagery [34], RGB-Depth data [7], and skeleton-based data [45].
Knowledge about the type of activity undertaken has been shown
to correlate with the calorific expenditure incurred [2]. In alignment
with Figure 1(a), we will argue in this work that an explicit activ-
ity recognition step in the vision pipeline can, as an intermediate
component, aid the visual estimate of energy uptake.

Energy Expenditure Estimation. 2D video has recently been used
by Edgcomb and Vahid [20] coarsely to estimate daily energy expen-
diture. In their work, subjects are first segmented from the scene
background. Changes in height and width of the subject’s motion
bounding box, together with vertical and horizontal velocities and
accelerations, are then used to estimate calorific uptake. Tsou and
Wu [21] take this idea further and estimate calorie consumption
using full 3D joint movements tracked as skeleton models by a
Microsoft Kinect. We note, however, that both of the above meth-
ods use wearable accelerometry as the target ground truth, which
in fact does not provide an accurate benchmark; skeleton data is
commonly noisy and currently only operates reliably when the
subject is facing the camera. This limits applicability in more com-
plex, in-the-wild, visual settings as, for instance, contained in the
SPHERE_RGBD+Inertial_calorie dataset. Our recent work in [19]
introduced a visual based framework for estimating calorific expen-
diture in a home environment, and we then extended it to be able to
estimate physical activity intensity levels in real-time [18]. Although
the method is practically applicable to more complex settings, the
light-weight features extracted from bounding boxes (velocity vector
and the ratio of height and width of the bounding box) can only help
make a gross estimate of calorific expenditure. In this paper, instead
of using only simple bounding box features, we simultaneously col-
lect RGB and depth imagery and then encode appearance and motion
features via spatial pyramids. The temporal information is encoded
using a pyramidal temporal pooling with multiple pooling opera-
tors. This has the aim of extracting rich, multi-level information to
give improved estimation accuracy, whilst maintaining applicability
to detect complex human activities.

2.3 Sensor Fusion

It is reasonable to expect that the use of multiple sensor types would
improve the overall performance compared to single sensor settings,
since sensors may complement the limitations of each other. Given
an accurate temporal synchronisation between the different modal-
ity sensors, learning from multi-modal data is applicable. In general,

feature-level fusion (early fusion) and decision-level fusion (late
fusion) are the two approaches most often employed to fuse mul-
tiple modalities. Both early and late fusion strategies are explained
in further detail in [46].

Feature-level Fusion. This methodology involves carrying out
fusion of features right after features are extracted from raw data.
This scheme only requires one learning stage and allows to take
advantage of mutual information from data. For instance, in [47], the
depth and inertial sensor data were concatenated, then an HMM clas-
sifier was employed for recognising basic gestures on the fused data.
The results reveal significant improvements when the fusion scheme
is applied compared to using each sensor individually. The work in
[17] investigates the practical home-use of body-worn mobile phone
inertial sensors together with an RGB-Depth camera to achieve
monitoring of daily living scenarios. The results indicate that the
vision-based approach significantly outperforms the wearable-based
method, while fusion of both sensors slightly improves the perfor-
mance further. Clearly, feature-level fusion can be applied effectively
in practical settings, however, it may suffers from the ‘curse of
dimensionality’.

Decision-level Fusion. This approach fuses the decisions made
by individual classifiers, each of which corresponding to one sensor.
Since decision information is of low complexity, the curse of dimen-
sionality can effectively be targeted. In [48], for instance, a Bayesian
co-boosting training framework combines multiple hidden Markov
model classifiers of two modalities - a Kinect sensor and an inertial
measurement unit. The result is the construction of a strong classi-
fier for gesture recognition, which achieved the best performance in
the Multi-modal gesture recognition challenge. A real-time action
recognition system in [49] uses Dempster-Shafer theory to combine
the classification outcomes from a depth camera and several inertial
sensors. A Bayesian model for sensor fusion is introduced in [16],
which aims at addressing the challenges of fusion of heterogeneous
sensor modalities in ambient assisted living.

Comparisons. In this work, we consider both fusion approaches
and provide a direct comparison. In the feature-level fusion
approach, features generated from the two modality sensors are
merged before classification, and the decision-level fusion is per-
formed by forming a linear combination of different classifiers
using stacking regression [50] to improve overall accuracy. As
outlined in the following section, our work attempts to use skeleton-
independent, RGB-Depth-based vision, together with two wear-
able accelerometer devices to estimate calorific expenditure against
a standardised calorimetry sensor COSMED-K4b2 based on gas
exchange.

3 Method

To describe our framework for estimating calorific expenditure,
we initially introduce the methods for visual and wearable sensors
separately, and then describe two approaches for their fusion.

Figure 1(a) shows a flowchart of the visual method – mapping
visual flow and depth features to calorie estimates using activity-
specific models. The method implements a cascaded and recurrent
approach, which explicitly detects activities as an intermediate to
select type-specific mapping functions for the final calorific estima-
tion. Importantly, our setup as a video-based system is designed to
reason about activities first, before estimating calorie expenditure
via a set of models which are each separately trained for particular
activities. In contrast to this, our direct mapping method designed
for wearable sensor data directly maps inertial features to calorie
estimates via a monolithic classifier. A flowchart of the wearable
approach is shown in Figure 1(b). In our fusion system we consider
both feature-level and decision-level fusion of these two approaches.
Finally, we compare these methods against a ground truth of gas-
exchange measurements and off-the-shelf alternatives, that is manual
mapping from activity classes to calorie estimates via metabolic
equivalent task (METs) lookup tables [2] as it is often applied in
clinical practice today.
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(a) Visual-based framework

(b) Wearable-based framework

Fig. 1: Overview of our Visual-based and wearable-based frameworks. (a) Visual-based framework. RGB-Depth videos are represented by
a combination of flow and depth features. The proposed recurrent method then selects activity-specific models which map to energy expenditure
estimates. (b) Wearable-based framework. Inertial features are formed from two accelerometer sensor data, then features are mapped directly
to calorie estimates via a monolithic classifier.

3.1 Visual Features

We obtain RGB and depth imagery using an Asus Xtion. For each
frame t, appearance and motion features are extracted, with the lat-
ter being computed with respect to the previous frame (level 0). A
set of temporal filters is then applied to form higher level motion
features (level 1). We extract features from within the bounding box
returned by the OpenNI SDK [51] person detector and tracker, which
allows to follow up to 6 persons in the camera view at the same time.
To normalise the utilised image region due to varying heights of the
subjects and their distance to the camera, the bounding box is scaled
by fixing its longer side to M = 60 pixels, a size recognised as
optimal for human action recognition [52], while maintaining aspect
ratio. The scaled bounding box is then centred in a M ×M square
box and horizontally padded.
Motion Feature Encoding - Inspired by [52], optical flow measure-
ments are taken over the bounding box area and split into horizontal
and vertical components. These are re-sampled to fit the normalised
box and a median filter with kernel size 5× 5 is applied to smooth
the data. A spatial pyramid structure is used to form hierarchical
features from this. Such partitioning of the image into an iteratively
growing number of sub-regions increases discriminative power. The
normalised bounding box is divided into a ng × ng non-overlapping
grid, where ng depends on the pyramid level, and the orientations of
each grid cell are quantised into nb bins. The parameters for our
experiments are empirically determined as nb = 9 and ng = 1 and
2 for levels 0 and 1 respectively. Figure 2(a) exemplifies optical flow
patterns and their encoding in two different example activities.

Appearance Feature Encoding - We extract depth features by
applying the histogram of oriented gradients (HOG) feature on raw
depth images [53] within the normalised bounding box. We then
apply Principal Component Analysis and keep the first 150 dimen-
sions of this high-dimensional descriptor, which retains 95% of the
total variance.

Pyramidal Temporal Pooling - Given the motion and appearance
features extracted from each frame in a sequence of images, it is
important to capture both short and long term temporal changes, and
summarise them to represent the motion in the video. Pooled motion
features were first presented in [43], even though designed for ego-
centric video analysis. We modify their pooling operator to make it

more suitable for our data as follows - an illustration of the tem-
poral pyramid structure and the process for pooling operations are
shown in Figure 2(b). The time series data S can be represented as
a set of time segments at level i as S = [S1

i , . . . ,S
2i

i ]. The final
feature representation is a concatenation of multiple pooling oper-
ators applied to each time segment at each level. The time series
data can also be explained as T per-frame feature vectors, such that
S = {S1, . . . , SN}, S ∈ RN×T for a video in matrix form, where
N is the length of the per-frame feature vector, and T is the number
of frames. A time series Sn = [sn(1), . . . , sn(T )] is the nth feature
across 1, . . . , T frames, where sn(t) denotes nth feature at frame t.
A set of temporal filters with multiple pooling operators is applied to
each time segment [tmin, tmax] and produces a single feature vector
for each segment via concatenation. We use two conventional pool-
ing operators, max pooling and sum pooling, as well as frequency
domain pooling. They are defined as:

Omax(Sn) = max
t=tmin···tmax

sn(t) and Osum(Sn) =

tmax∑
t=tmin

sn(t)

(1)
Frequency domain pooling is used to represent the time series Sn
in the frequency domain by the discrete cosine transform (dct),
where the pooling operator takes the absolute value of the j lowest
frequency components of the frequency coefficients D,

Odct(Sn) =
∣∣M1:jSn

∣∣ (2)

where M is the discrete cosine transformation matrix.

3.2 Inertial Features

Raw time series data from accelerometers is measured as [X,Y, Z]
vectors, where each column corresponds to acceleration in orthog-
onal spatial dimensions. Figure 3 illustrates the raw accelerometer
data collected from one wearable device for various actions. From
the raw data the pooled motion features are formed from each of
the three axes for each device. Abstracting short-term and long-term
changes in the inertial feature descriptor is essential; it is particularly
useful for modelling the level of activity intensity changes. Thus,
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(a) Flow feature encoding via spatial pyramids

(b) Temporal pyramid pooling

Fig. 2: (a) Flow feature encoding via spatial pyramids. First row: limited motion while standing still. Second row: significant motion features
when moving during vacuuming. First column: colour images with detected person. Second column: optical flow patterns. Third column: motion
features at level 0. Last column: motion features from the top-right quadrants of the image at level 1 (at which the image is subdivided into
four quadrants). (b) Temporal pyramid pooling and its feature representation. This schematic shows the temporal subdivision of data into
various pyramidal levels (left) and the concatenation of resulting feature (e.g. max, sum and dct) into a descriptor vector (right).

we apply three pooling operators (max pooling, sum pooling and
frequency domain pooling) to the inertial data.

3.3 Learning and Recurrency

Energy expenditure estimation can be formulated as a sequential and
supervised regression problem. We train a support vector regres-
sor to predict calorie values from given features over a training
set. The sliding window method is used to map each input win-
dow of width w to an individual output value yt. The window
contains the current and the previous w − 1 observations. The win-
dow feature is represented by temporal pooling from the time series
S =

{
St−w+1, . . . , St

}
.

We note that energy values for a particular time are highly depen-
dent on the energy expenditure history. In our system, these are most
directly expressed by previous calorific predictions during operation.
Thus, employing recurrent sliding windows offers an option to not
only use the features within a window, but also take the most recent
d predictions

{
ŷt−d, . . . , ŷt−1

}
into consideration to help predict

yt. During learning, as suggested in [54], the ground truth labels in
the training set are used in place of recurrent values.

3.4 Fusion Approach

Both feature-level and decision-level fusion are considered in our
work.

Feature-level Fusion. This is an early fusion approach, for which all
features from all modalities are concatenated together, and employed
as a single unified feature stream to the learning components.
Given visual features in d1-dimensional feature space Sv ∈ Rd1 and
accelerometer features in d2-dimensional feature space Sa ∈ Rd2 ,
the fused feature set can be represented as S ∈ Rd1+d2 , where the
feature set is constructed as S = (Sv,Sa). The fused feature vec-
tor is then used as input to the classifiers of the system. Figure 4(a)
shows a flowchart of this feature-level fusion approach.

Decision-level Fusion. In this approach, a collection of models are
learned, and the predictions are combined together only at the last
stage to form the final decision. We apply the decision-level fusion
via a stacking regression method, which forms linear combinations
of different classifiers to improve overall estimation accuracy.

Consider that there are K predicted values ŷ1, . . . , ŷK estimated
from each regressor individually. Then, the final predictor value
Ŷ (S) can be represented as a linear combination of a set of predicted
values with different weighting coefficients, constructed as:

Ŷ (S) =
K∑
k=1

αkŷk(S) (3)
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Fig. 3: Ground truth example sequence. Top: Raw per breath data (red) and smoothed COSMED-K4b2 calorimeter readings (blue) and
sample colour images corresponding to the activities performed by the subject. Bottom: Three-axis acceleration signals from the waist-wear
sensor.

Given a set of training data {(S1, y1), . . . , (ST , yT )} with T train-
ing samples, where each St is an input vector, the goal is to
minimise the distance of the ground truth yt and the predicted values
Ŷ t(S) from the combined regressor. This optimised distance can be
obtained by

argmin
αk

T∑
t=1

(
yt −

K∑
k=1

αkŷ
t
k(S

t)

)2

, (4)

with the constraints 0 ≤ αk ≤ 1, k = 1, . . . ,K. The resulting com-
bined predicted value

∑K
k=1 αkŷk(S) is then used as prediction.

Figure 4(b) shows a flowchart of this decision-level fusion approach.

4 Experimental Results

4.1 Dataset and Ground Truth

We introduce the SPHERE_RGBD+Inertial_calorie dataset for
human calorific expenditure estimation, comprising RGB-Depth and
inertial sensor data captured in a real living environment. The ground
truth was captured by the COSMED K4b2 portable metabolic mea-
surement system. The dataset was generated over 20 sessions by
10 subjects with varying anthropometric measurements. Participants
were 7 males and 3 females, with mean age of 27.2 ± 3.8 years,
mean weight of 72.3 ± 15.0 kg, mean height of 173.6 ± 9.8, mean
BMI of 23.7 ± 2.8. Ethics approval was obtained and each partici-
pant signed a consent form agreeing to share their data for research

purposes. The dataset contains up to 11 activity categories per ses-
sion, and totalling around 10 hours recording time. The activities
were captured in daily-living scenarios containing a variety of body
positions, view-points and distances naturally associated with the
various actions performed. Figure 5 shows frames from the vaccum-
ing activity depicting this variety. It is also shown that the sequences
are captured in different time of the day which contains various light-
ing conditions. All the activities, the associated intensity categories
and MET values are shown in Table 1. In addition, Table 2 lists the
number of frames for each action and sequence∗.

Colour and depth images were acquired at a rate of 30Hz. The
accelerometer data was captured at about 100Hz and sampled down
to 30Hz, a frequency recognised as optimal for human action recog-
nition [55]. The calorimeter gives readings per breath, which occurs
approximately every 3 seconds. To model transitions better between
activity levels, we consider the 9 different combinations of the three
activity intensities (Light, Light+, Moderate) in the design of each
session.

Figure 3 shows a detailed example of calorimeter readings and
associated sample RGB images from the dataset (top) and the
accelerometer data reading (bottom). The raw breath data is noisy
(in red). We apply an average filter with a span of approximately
20 breaths (in blue). The participants were asked to perform the

∗Some actions in certain sequences are missing due to various reasons

(hence they have 0 frames), for example exercise is missing in sequences 7

and 17 as the participants had difficulty in performing the action.
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(a) Feature-level fusion

(b) Decision-level fusion

Fig. 4: Fusion approaches overview. (a) Feature-level fusion framework. The features from visual and inertial sensors are concatenated to
form a monolithic input into activity recognition and activity-specific models. (b) Decision-level fusion framework. Calorie values are predicted
individually by the different sensor modalities, and then combined using a regression method to form final calorie estimates

Fig. 5: Example poses from the activity “vacuuming”. It can be seen that the sequences contain a large variety of body positions, view-points
and distances naturally associated with the action. Two example sequences are captured in daytime and nighttime respectively indicating
different lighting conditions.

activities based on their own living habits without any extra instruc-
tions.
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seq ID stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
1 3739 5230 5509 5117 5447 5113 5142 2789 2421 5072 6092 51671
2 3546 5388 5304 5244 5177 5091 5020 2545 2566 5112 5311 50304
3 3876 5682 6093 4745 5151 4946 5360 2297 2318 5317 5095 50880
4 3948 5211 5470 5182 5025 4813 3784 0 0 0 0 33433
5 3239 5133 5670 4878 5436 4327 0 0 0 0 0 28683
6 3812 5294 5889 5023 5015 4841 4878 3205 1778 4738 5070 49543
7 3796 5239 11602 6684 4432 4561 3590 0 5474 5837 5337 56552
8 3951 5257 5412 5244 4886 1005 0 0 0 0 0 25755
9 4128 5568 5091 5195 4651 3619 4891 2458 2483 5700 5298 49082

10 3649 5202 5317 5354 4651 4990 5030 2330 1669 3933 5337 47462
11 4367 4901 5503 5133 5006 4761 0 0 0 0 0 29671
12 3697 5270 5618 5010 5107 4988 4991 2891 2335 5299 5412 50618
13 4250 5936 4644 5162 5259 4517 4944 899 2839 5495 6206 50151
14 4263 4732 5370 5150 4769 4847 4861 3008 3224 4366 5765 50355
15 3457 5784 4789 4745 5159 4911 0 0 0 0 0 28845
16 3919 5466 5062 5308 2716 0 0 0 0 0 0 22471
17 3613 5343 5432 4914 5032 4461 4979 0 5063 5902 4873 49612
18 3715 5340 5422 5013 5893 4743 4517 1977 2793 5948 5012 50373
19 4521 5434 5787 4740 5015 4459 5480 3174 2707 4803 6342 52462
20 4040 5255 5597 5472 5309 4551 4926 1797 1691 6356 6443 51437

Table 2 Number of frames per sequence and action in SPHERE_RGBD+Inertial_calorie dataset

Intensity Activity MET value

Light

sit still 1.3
stand still 1.3
lying down 1.3

reading 1.5

Light+
walking 2.0

wiping table 2.3
cleaning floor stain 3.0

Moderate

vacuuming 3.3
sweeping floor 3.3

upper body exercise 4.0
stretch 5.0

Table 1 Activities, their associated MET values and the levels of activity intensity.

4.2 Parameter Settings

In our experiments, we use non-linear SVMs with Radial Basis
Function kernels for activity classification and a linear support vec-
tor regressor for energy expenditure prediction. The libsvm [56]
implementation was used. We perform a grid search algorithm to
estimate the hyper-parameters of the SVM. To test our individual-
independent approach, we implement leave-one-subject-out cross
validation on the dataset in which each subject’s data are tested in
turn using models trained with all other subject data combined. This
process iterates through all subjects, and the average testing error
and standard deviation of all iterations are reported. We use the nor-
malised root-mean-squared error (normalised RMSE) as a standard
evaluation metric to facilitate the comparison between data with dif-
ferent scales for the deviation of estimated calorie values from the
ground truth.

4.3 Evaluation of Individual Modalities

We start with tests on each sensor type (visual and inertial), and
compare their performance in situations when used independently.

Temporal window size. The accuracy of predicted calorie values
is linked to the window of previous information utilised for making
the prediction. In a first experiment we look at the relation between
window length on the one hand, and activity recognition and calorie
prediction errors on the other. All sequences are tested with temporal
windows of w = {7.5, 15, 30, 60} seconds. Tables 3 and 4 illustrate

the activity recognition rates and the average normalised RMSEs
for calorie prediction at different window length w using visual and
accelerometer data, respectively. It can be seen that, in both modal-
ities, the best performance across the set for recognising activities
is achieved when a relatively small size of window is applied. The
confusion matrices corresponding to the use of visual and inertial
sensors are depicted in Figure 6).

In a second experiment, we test how the estimated calorie value
is influenced by the performance of action recognition. The results
for each activity using visual and inertial sensors are listed in Tables
5 and 6, respectively. We first test a system in which the ground truth
labels are used to select the activity-specific model for calorie pre-
diction (top rows in Tables 5 and 6). We then compare actual action
recognition at varying window lengths w = {7.5, 15, 30, 60} sec-
onds. In all cases, we use a fixed window length w = 60 seconds
for calorific expenditure estimation to focus on the effect of varying
action recognition quality. As expected, it can be observed that for
most activities, the calorie estimation error is smallest when there
is no activity recognition error (top rows in Tables 5 and 6). For a
more detailed visualisation, we also show the results in Figure 7;
the 11 actions are grouped into three clusters based on their inten-
sity level (see Table 1). The figure summarises the calorie prediction
error for different intensities and action recognition rates using the
visual system and the inertial system, respectively.

Model comparison. As just observed, activity recognition accuracy
affects the calorie prediction results. To determine if the activity-
specific model provides a predictive advantage, we compare the esti-
mation performance of the activity-specific (AS) approach against
the direct mapping (DM) approach for each sensor modality. For
both sensor systems, we select a fixed window length of w = 60
seconds to analyse performance for calorie value prediction in both
DM and AS, andw = 15 seconds for activity recognition in AS. The
results are shown in Figure 8(a) for each activity. It can be seen that
for the visual-based system, the AS provides best prediction results
overall and significantly outperforms DM in most activities. For the
inertial-based system, the error associated with AS is significantly
higher compared to DM. This is in part due to poor activity recogni-
tion results in an inertial measurement setup, which effectively leads
to using wrong models to estimate calorie values.

Evaluation of a recurrent system layout. To evaluate the use of
recurrency, we set the AS method using the sliding window tech-
nique as our baseline method for the vision-based comparison,
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w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

7.5
activity 83.5 75.2 90.5 70.2 79.7 73.4 58.6 36.6 54.1 93.8 39.9 72.3
calorie 0.84 0.70 0.29 0.52 0.31 0.41 0.74 0.63 0.52 0.41 0.67 0.58

15
activity 86.5 77.6 88.3 69.4 79.0 76.5 62.3 39.2 61.1 91.4 38.9 73.7
calorie 0.83 0.66 0.30 0.46 0.34 0.45 0.74 0.66 0.54 0.40 0.64 0.53

30
activity 85.0 79.1 89.4 71.9 81.1 75.2 54.3 40.3 57.8 90.4 36.8 71.1
calorie 0.73 0.52 0.30 0.41 0.36 0.41 0.66 0.55 0.54 0.37 0.54 0.49

60
activity 81.1 79.7 85.1 66.0 77.2 72.9 33.0 29.3 52.7 90.0 35.9 68.2
calorie 0.54 0.45 0.32 0.44 0.34 0.39 0.58 0.42 0.52 0.38 0.50 0.45

Table 3 Vision-based prediction results. Activity recognition rate (%) and calorific expenditure prediction error (normalised RMSE) with different window lengths w,
stated in seconds.

w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

7.5
activity 91.1 58.7 78.1 43.6 50.1 48.2 66.0 51.8 65.2 59.8 48.0 60.1
calorie 0.54 0.50 0.49 0.52 0.51 0.41 0.64 0.83 0.72 0.51 0.77 0.63

15
activity 89.7 58.9 86.7 43.9 50.5 37.9 63.4 66.7 68.1 66.6 61.8 60.3
calorie 0.50 0.51 0.41 0.45 0.46 0.38 0.53 0.80 0.68 0.44 0.73 0.59

30
activity 88.7 56.9 83.9 46.6 48.7 36.4 69.4 51.8 64.1 61.0 52.1 58.0
calorie 0.46 0.49 0.48 0.46 0.52 0.35 0.54 0.77 0.60 0.43 0.71 0.56

60
activity 90.8 55.3 74.8 52.3 49.6 45.7 73.1 44.9 59.0 64.2 56.0 58.3
calorie 0.41 0.41 0.51 0.50 0.47 0.40 0.57 0.64 0.55 0.41 0.71 0.54

Table 4 Inertial-based prediction results. Activity recognition rate (%) and calorific expenditure prediction error (normalised RMSE) with different window lengths
w, stated in seconds.

and the DM method for inertial-based comparison. We now intro-
duce two methods, which are based on recurrent sliding window
approaches. The first method (Recurrent1) uses the most recent pre-
dictions of the baseline method as input together with visual/inertial
features to predict current calorie value. Thus, it implements indi-
rect recurrency utilising the predicted values from the baseline as
recent predictions. The second method (Recurrent2) implements full
recurrency, i.e. it uses its own output as recurrent input together with
visual/inertial features.

Table 7 shows the effect of using recurrent information, with
the best results for each activity highlighted. In general, the full
recurrency model, Recurrent2, suffers from drift and produces the
worst results for half of the activities and also overall. When the
visual sensor is used, indirect recurrency, Recurrent1, outperforms
the other approaches at an average normalised RMSE of 0.42, while
in inertial-based systems indirect recurrency increases the estimation
error by 7% comparing to its baseline.

4.4 Comparing Sensor Fusion Approaches

Having tested the two modalities individually, we now study modal-
ity fusion approaches against the use of individual sensor systems,
and also compare against the MET look-up table method for com-
pleteness.

In feature level fusion, we apply our AS approach with w = 15
seconds for activity recognition and w = 60 seconds for calorific
expenditure estimation. In decision level fusion, we again use the
most suitable model for each sensor data to fuse, which is the AS
approach for visual sensor data, and DM approach for inertial sen-
sor data. The estimation performance of the two fusion approaches
is compared with the performance of each sensor modality indi-
vidually, as shown in Figure 8(b). It can be seen that both fusion
approaches on average outperform unimodal prediction. In partic-
ular, by combining the features from the visual and the inertial
data, the overall prediction error decreases from 0.46 (inertial sen-
sors alone) and 0.42 (visual sensor alone) to 0.39. The calorie
prediction accuracy for most activities are improved when using
fusion approaches. We also observed that the two fusion frameworks
achieve similar performance.

Finally, we present the results produced by MET, which is com-
monly used by clinicians and physiotherapists, and compare our

proposed methods against it. It assumes N clusters of activity
A = {A1, A2, . . . , AN} are known. A MET value is assigned to
each cluster, together with anthropometric characteristics of individ-
uals. The amount of activity-specific energy expended can then be
estimated as energy = 0.0175(kcal/kg/min)× weight (kg)× MET
values [2]. Here, we use the ground truth labels to select activities
to keep this procedure identical to the commonly used manual esti-
mate. Table 8 presents the detailed results for each sequence. The
accuracy is calculated over the total calorie expended in each record-
ing session. We also measure the correlation between the ground
truth and the observed values∗. We can see that the fusion of visual
and inertial sensors achieves higher accuracy and correlation in more
sequences than the MET model or unimodal approaches, and obtains
better rates on average, which points towards an advantage of using
visual-inertial setups for the task of calorific expenditure prediction.

5 Conclusion and Future Directions

We have presented a system for calorific expenditure estimation
using data from two different modality sensors, a RGB-Depth cam-
era sensor and wearable inertial sensors (accelerometers). We have
demonstrated the effectiveness of the fusion approach through a
comprehensive comparative study with single modality setups and
widely used METs prediction. The proposed fusion system used
pooled spatial and temporal pyramids of visual and accelerom-
eter features, which subsequently are fed in both early and late
fusion approaches. To test the methodology, we introduced the chal-
lenging SPHERE_RGBD+Inertial_calorie dataset, which covers a
wide variety of home-based human activities. The proposed fusion
method demonstrates its ability to outperform the METs estima-
tion approach and the use of single modality sensors. The focus of
the paper has been on presenting a system for estimating calorific
expenditure from combined visual and accelerometer sensors, where
the purpose of the study has been to show that the fusion of both
modalities improves the estimates beyond the accuracy of single
modality, and the proposed system outperforms manual metabolic

∗Note that the total calorie values for sequence 4, 5, 8, 11, 15 and 16 are

relatively low due to shorter sequences.
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Fig. 6: The recognition confusion matrices from the best activity recognition results corresponding to the use of (a) visual sensor and (b)
inertial sensors.

calorie
w

activity
w

stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

60

n/a 0.40 0.45 0.28 0.35 0.32 0.38 0.55 0.36 0.55 0.36 0.50 0.43
7.5 0.51 0.43 0.28 0.38 0.33 0.38 0.58 0.43 0.55 0.35 0.43 0.45
15 0.41 0.43 0.30 0.41 0.32 0.39 0.57 0.45 0.54 0.36 0.44 0.44
30 0.47 0.44 0.30 0.42 0.31 0.37 0.56 0.44 0.53 0.37 0.46 0.44
60 0.54 0.45 0.32 0.44 0.34 0.39 0.58 0.42 0.52 0.38 0.50 0.45

Table 5 Calorific expenditure prediction error (normalised RMSE) using the visual sensor when ground truth labels are used to select the activity-specific model (top
row). and when action recognition is employed at different window lengths.

look up table based methods – the main measure used in clini-
cal practice today. We acknowledge that applying more advanced
fusion approaches and different feature representations may improve
the performance further. Possible future directions include introduc-
ing deep learning models and investigating advanced data fusion
methodologies for different modality sensors. We hope this work,
and the new dataset, will establish a baseline for future research in
the area.
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Fig. 7: Prediction Accuracy of Calorific Expenditure. Average calorie prediction errors (normalised RMSE) when ground truth labels are
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Fig. 8: (a) Average calorie prediction errors (normalised RMSE) of DM and AS approaches using visual and inertial sensors, respectively. (b)
Average calorie prediction errors (normalised RMSE) of using visual sensor only (Visual), inertial sensors only (Inertial) and two sensor fusion
approaches.
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Prediction (Calories) Accuracy % Correlation
sequence GT Visual Inertial Fusion MET Visual Inertial Fusion MET Visual Inertial Fusion MET

1 59 71 76 63 76 80.2 71.1 93.9 71.3 0.83 0.40 0.88 0.66
2 89 80 83 95 78 90.3 93.3 93.5 88.2 0.85 0.67 0.76 0.57
3 74 81 83 78 69 90.1 88.6 94.1 92.7 0.84 0.73 0.83 0.63
4 79 48 52 56 43 60.4 66.1 71.5 55.0 0.87 0.89 0.87 0.78
5 37 39 50 40 28 98.6 63.1 91.5 77.6 0.90 0.82 0.88 0.77
6 89 86 88 87 107 94.3 99.0 90.6 98.1 0.82 0.73 0.83 0.63
7 101 96 94 109 114 95.3 92.7 92.0 87.6 0.61 0.65 0.66 0.61
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