
ORIGINAL RESEARCH PAPER

DS-KCF: a real-time tracker for RGB-D data

Sion Hannuna1 • Massimo Camplani1 • Jake Hall1 • Majid Mirmehdi1 •

Dima Damen1 • Tilo Burghardt1 • Adeline Paiement1 • Lili Tao1

Received: 11 May 2016 / Accepted: 11 November 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We propose an RGB-D single-object tracker,

built upon the extremely fast RGB-only KCF tracker that is

able to exploit depth information to handle scale changes,

occlusions, and shape changes. Despite the computational

demands of the extra functionalities, we still achieve real-

time performance rates of 35–43 fps in MATLAB and 187

fps in our C?? implementation. Our proposed method

includes fast depth-based target object segmentation that

enables, (1) efficient scale change handling within the KCF

core functionality in the Fourier domain, (2) the detection

of occlusions by temporal analysis of the target’s depth

distribution, and (3) the estimation of a target’s change of

shape through the temporal evolution of its segmented

silhouette allows. Finally, we provide an in-depth analysis

of the factors affecting the throughput and precision of our

proposed tracker and perform extensive comparative

analysis. Both the MATLAB and C?? versions of our

software are available in the public domain.

Keywords RGB-D tracking � Correlation filters � Scale

and shape changes handling � Occlusion detection �
Depth-based segmentation

1 Introduction

One of the most fundamental and active areas of computer

vision is object tracking, as demonstrated by several recent

reviews [30, 38, 43] and challenges [27]. These show that

tracking algorithms based on 2D visual cues (hereafter

referred to as RGB trackers) have greatly improved, but

that the tracking problem is still far from being resolved. A

number of ongoing challenges still remain, such as han-

dling object appearance changes, illumination variations,

occlusions, shape deformations, and camera motion.

On the other hand, depth sensors have seen a recent

surge in popularity and have been successfully used in

many computer vision applications [20]. These devices

facilitate the acquisition of reliable depth data in indoor

environments at no extra computational cost. Depth

information can potentially be exploited to boost the per-

formance of traditional object tracking algorithms.

Research into combining depth and colour data for tracking

is still in its infancy [7]. However, it has been demonstrated

that state-of-the-art RGB tracking algorithms can be out-

performed by approaches that fuse colour and depth, for

example [6, 7, 15, 36, 39, 41].

To expand on this concept, this paper will first review in

detail a number of recent object tracking algorithms based

on the combination of colour and depth data. Note that we

& Majid Mirmehdi

M.Mirmehdi@bristol.ac.uk

Sion Hannuna

sh1670@bristol.ac.uk

Massimo Camplani

massimo.camplani@bristol.ac.uk

Jake Hall

J.Hall@bristol.ac.uk

Dima Damen

D.Damen@bristol.ac.uk

Tilo Burghardt

tb2935@bristol.ac.uk

Adeline Paiement

A.Paiement@bristol.ac.uk

Lili Tao

L.Tao@bristol.ac.uk

1 Visual Information Laboratory, Faculty of Engineering,

University of Bristol, Bristol, UK

123

J Real-Time Image Proc

DOI 10.1007/s11554-016-0654-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0654-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0654-3&domain=pdf

shall refer to these methods as RGB-D trackers. Then, the

RGB-D method proposed in this paper will be presented

which is based on, and improves upon, the RGB kernelized

correlation filter (KCF) tracker from [22]. The KCF tracker

combines high accuracy and fast processing speeds as

demonstrated in [22] and elsewhere, and in particular in the

benchmarking work in [43], where processing rates

exceeding 150 fps were reported. Despite the KCF tracker

not being able to handle changes in scale or shape, it still

obtains performances comparable with other state-of-the-

art approaches (it is in the eighth position in the top ten

rank in [43]), while guaranteeing a very high processing

throughput. Unsurprisingly, given these results, KCF has

quickly gained popularity in the computer vision commu-

nity as demonstrated by several recently published works

and extensions [6, 9, 11, 33, 35].

In this work, we provide a detailed description and

evaluation of our real-time RGB-D tracker, namely DS-

KCF, which improves on the performance of the KCF

tracker by (1) integrating depth and colour features in the

KCF framework, and efficiently handling (2) scale chan-

ges, (3) occlusions, and (4) aspect ratio changes of the

target model. We reported an early version of DS-KCF in

[6] which operated the first two of the above functionali-

ties, but here we provide a more detailed presentation and

evaluation of our tracker, including its full functionalities.

We exploit the target’s depth distribution to identify and

efficiently model its scale changes in the Fourier domain.

We handle occlusions by identifying sudden changes in the

target region’s depth histogram and recovering lost tracks

by searching for the unoccluded object in specifically

identified key areas. Finally, temporal evolution of the

segmented target’s silhouette is evaluated to identify shape

changes. Another new aspect of the DS-KCF tracker is that

we have added a Kalman filter motion model for improved

tracking performance during occlusions. Our DS-KCF

tracker can run at an average rate of 35.7 fps (increasing to

43.5 fps without shape change handling if it is not neces-

sary) implemented in MATLAB and at an average rate of

187 fps (without shape change handling) implemented in

C??, measured on 100 sequences of the Princeton RGB-D

dataset [39]. To the best of the authors’ knowledge, DS-

KCF is the fastest single-object RGB-D tracker released so

far.

The paper is structured as follows. In Sect. 2, state-of-

the-art tracking methods based on the fusion of colour and

depth information are reviewed. In Sect. 3, the basic fea-

tures of the KCF tracker are described. In Sect. 4, the

proposed DS-KCF tracker and its novel contributions are

reported. Experimental results are presented in Sect. 5, and

our conclusions are in the last section.

2 Past contributions in RGB-D tracking

Visual tracking combined with accurate, dense depth data

has only recently gained the attention of the computer

vision community due to the availability of low-cost RGB-

D sensors. Hence, relatively few significant works have

been published to date.

One of the first contributions in this area, where the

importance of depth data in tracking algorithms was clearly

demonstrated, was in [39]. Its authors released a large

public dataset which includes more than 100 videos

(Princeton dataset, more details in Sect. 5). HoG features

calculated on both colour and depth data were used to build

the target model, with negative instances obtained by

randomly sampling the rest of the image. These features

were then used by an SVM classifier to detect the object

along the sequence. SVM detections were linearly com-

bined with the outcome of an optical flow tracker to

improve the tracking reliability. Occlusion was also han-

dled to a considerable extent in [39], based on the

assumption that the depth distribution of the plane closest

to the camera contains the tracked object. During occlu-

sion, optical flow tracks the object occluding the target

until the target re-emerges. The overall approach was

computationally expensive at 0.26 fps on average (for the

dataset in [39]), due to the exhaustive search, optical flow

computations, and elaborate colour and depth segmenta-

tion. However, in terms of precision it outperformed state-

of-the-art RGB-only trackers.

A similar approach was presented in [10], where the

RGB tracker TLD [24] was extended to include depth as an

additional feature in the tracking stage. The depth infor-

mation was also employed to filter out background pixels

and to detect occlusions with the same approach proposed

in [39]. Also, the ratio between depth and object size was

used to refine the TLD detection phase. This method

reported a processing rate of less than 10 fps.

In [41] a multi-cue framework based on a combination

of optical flow, colour, and depth data was presented.

Optical flow (estimated on RGB images) was used to

roughly estimate the target’s movements, and the target

position was then refined by partitioning its area into four

subregions: top, down, left, and right. For each subregion, a

colour histogram model and a depth model, represented by

the mean depth, were generated. The distances between the

colour models and the depth models were then estimated

and linearly combined, and the new target position was

assigned to the region that minimizes that distance. Their

work did not detail how their model was updated, and their

results were reported on sequences not publicly available

without data about the processing throughput.

J Real-Time Image Proc

123

The algorithm presented in [15] extended the conden-

sation-based RGB tracker of Klein and Cremers [26] to

incorporate depth data and predict the 3D spatial state of

the particles in the condensation algorithm. Their boosting

classifier was built from a pool of greyscale, colour, and

depth features which was kept small to provide the right

balance between computational efficiency and accuracy.

Tracking was adaptive as their classifier was retrained with

tracked examples. Occlusions were detected when the

tracker response was below a certain threshold. They

reported an average processing rate of 30 fps.

The RGB-D tracker presented in [36] based on a colour-

and depth-based ‘occlusion aware’ particle filter tracking

framework was introduced. A particle represents a region’s

bounding box and an occlusion threshold. When this

threshold is breached, occlusion is detected and the

bounding box search area is expanded. The proposed par-

ticle filter system utilizes a combination of different fea-

tures, including histograms of colour and depth, a

histogram of texture, 3D shape parameters, and edge

information. This method is the best RGB-D tracker tested

on the Princeton dataset [39] in terms of accuracy; how-

ever, it performs at an average processing rate of 1 fps.

In [2], a depth-only tracker was proposed by adapting

the Struck RGB tracker [21] to depth data by introducing a

new feature called local depth pattern for tracking (LDPT),

inspired by the local binary pattern feature. Their approach

outperforms RGB trackers, but its performance is poor

compared to other RGB-D trackers on the Princeton dataset

[39]. No data about the processing rate were reported.

The DS-KCF tracker we introduced in [6], and outline in

more detail and analysis in Sect. 4, provides a more bal-

anced solution than other RGB-D trackers, as it combines

strong localization accuracy with real-time performance.

Next, we outline the fundamentals of the KCF tracker,

followed by a detailed presentation of DS-KCF and its

features.

3 The KCF tracker and its extensions

In this section, we firstly describe the KCF tracker with

focus on aspects pertinent to our proposed extensions. For a

more detailed description, with associated proofs, refer

[22]. Additionally, refer the works presented in

[3, 9, 14, 22, 23] for a comprehensive overview of corre-

lation filters. Then, we provide a short review of the most

relevant extensions to the KCF tracker, with more details

found in the recent survey [9]. Table 1 contains a summary

of the key symbols used throughout the paper.

KCF tracker Henriques et al. [22] proposed using the

‘kernel trick’ [37] to extend correlation filters for very fast

RGB tracking. Their so-called KCF tracker is noteworthy

for combining high accuracy and processing speed. In the

comprehensive RGB tracking benchmarking work in [43],

KCF was ranked in the eighth position while coming in

first as the fastest. Furthermore, its accuracy is comparable

to other state-of-the-art approaches. These attributes make

KCF a method of choice for those who need a very fast and

reliable tracker.

As shown in Fig. 1, the processing pipeline in the KCF

tracker is comprised of training, detection, and retraining at

the new target location. This final step includes updating

the previous frame’s model parameters with the current one

based on an empirically determined interpolation factor.

KCF exploits the properties of circulant matrices to

achieve efficient learning. An m� m circulant matrix CðxÞ
may be constructed from an m� 1 vector, x, by applying a

cyclic shift operator

CðxÞ ¼

x1 x2 x3 . . . xm

xm x1 x2 . . . xm�1

..

. ..
. ..

. . .
. ..

.

x2 x3 x4 . . . x1

2
66664

3
77775
: ð1Þ

Circulant matrices are pertinent to tracking and detection as

they implicitly encode convolution. Given that CðxÞy is the

convolution of x and y, convolution may be performed in

the Fourier domain via element-wise multiplication, i.e.

CðxÞy ¼ F�1ðF�ðxÞ � FðyÞÞ; ð2Þ

Table 1 Summary of used symbols

Symbol Description

z Tracked patch area

X Segmented region

C Spatial extent of X

l;r Mean depth and standard deviation of X

Sr;Sq Continuous and discrete scaling factors

Fig. 1 Block diagram of the KCF tracker

J Real-Time Image Proc

123

where � is the complex conjugate, � is the element-wise

multiplication, and F and F�1 are the Fourier and inverse

Fourier transformations.

Applying the above ideas to linear regression, it may be

shown that the standard formulation for ridge regression,

where X is the design matrix (XH is the Hermitian trans-

pose), k is a penalty term, and y is the regression target, is

w ¼ ðXHX þ kIÞ�1
XTy; ð3Þ

and this may be reformulated as

FðwÞ ¼ F�ðxÞ � FðyÞ
F�ðxÞ � FðxÞ þ k

; ð4Þ

where the fraction indicates element-wise division.

The efficiency of the KCF is apparent from (4), as it

reduces the computational complexity of the general

regression problem from Oðn3Þ for ridge regression to the

element-wise operations included in (4). To completely

recover the values of w we also have to consider the DFT

complexity equal to Oðn log nÞ.
Similar expressions can be derived when nonlinear

regression is used. By using the kernel trick, the solution w

may be stated as w ¼
P

i aiuðxiÞ where the variables ai
need to be estimated instead of w; and u is the function that

maps x into the nonlinear feature space. The kernelized

version of ridge regression can be written as

a ¼ K þ kIð Þ�1y; ð5Þ

where K is the circulant kernel matrix, with elements Kij

corresponding to cðxi; xjÞ and c is the selected kernel

function. As in [22], (5) can be reformulated using similar

circulant matrices concepts such that

a ¼ F�1 FðyÞ
F�ðcxxÞ þ k

� �
; ð6Þ

where cxx is the first row of K. We refer to (6) generally as

the training phase of the KCF tracker, as reported in the

second module in Fig. 1. Once a is calculated, the circulant

matrix properties can be exploited to estimate efficiently

and simultaneously the response of the classifier f ðzÞ at

various image patches z,

f ðzÞ ¼ F�1 F�ðcxzÞ � FðaÞð Þ: ð7Þ

This operation is performed in the Fourier domain,

employing element-wise multiplication and the DFT. The

new target location is then selected as the one that maxi-

mizes the response f ðzÞ (see first block of Fig. 1).

In [22], different kernels were presented, with the

Gaussian kernel demonstrating optimal trade-off between

accuracy and computational complexity (equal to

Oðn log nÞ). Hence, in our implementation we use

cxz ¼ exp � 1

r2
xk k2þ zk k2�2F�1 F xð Þ � F� zð Þð Þ

� �� �
:

ð8Þ

To summarize, the KCF tracker is based on a simple pro-

cessing chain. An image patch is extracted at the estimated

target location, and a precomputed cosine window is

applied to the patch to reduce the noise in the Fourier

domain. The target position is detected by maximizing f ðzÞ
[as in (7)]. The model is trained using Gaussian-shaped

regression targets that provide smooth responses. Model

updates are performed by linearly interpolating the new

parameters a and x with the current ones.

KCF assumes the bounding box containing the target

object is initialized once at the beginning of the sequence.

This assumption has been accepted to evaluate all single-

object trackers, as for example in recent reviews in

[30, 38, 43] and challenges [27]. KCF-based trackers can

be initialized by a number of detectors, and to the best of

the authors’ knowledge the study of an optimal combina-

tion between a detector and KCF-based tracker has not yet

been explored.

KCF extensions Due to the unique characteristics of the

KCF, several extensions have been proposed since [22]. In

this section, we report the ones which share characteristics

with our proposed modifications (i.e. change of scale,

feature selection, etc.). For a more detailed review of KCF

variations, see [9].

Different feature sets have been used within the KCF

framework, and as expected, the dimensionality of the

selected features has a direct impact on the time com-

plexity and memory requirements of their respective

trackers. Both raw RGB and HoG features were success-

fully tested in the original KCF paper [22]. HoG features

provide a higher accuracy without compromising real-time

performance as the higher dimensionality of the feature

space is compensated for by smaller patch sizes due to

HoG’s discrete cells. In [12], an exhaustive evaluation of

the KCF tracker with different colour features is provided.

The authors demonstrate that colour name (CN) combined

with the intensity channel guarantees the best tracking

accuracy. Additionally, they provide an adaptive feature

reduction approach to maintain a high processing speed

(around 100 fps). CN has also been used in [31, 44]

combined with HoG features. To the best of the authors’

knowledge, the proposed DS-KCF and eDS-KCF frame-

works are the only ones fusing both colour and depth data

in a KCF-like framework.

One of the main drawbacks of the KCF tracker is that it

is not able to cope with scale changes. Specifically, the

target and model size are fixed according to the initial

object size. Many of the extensions proposed so far try to

solve this problem by using a pool of scale models. In [11]

J Real-Time Image Proc

123

the KCF position and size were assigned to the solution

that maximizes Eq. (7) among the different scales and

positions. The authors demonstrated that while this

exhaustive search provides the most accurate results, it

leads to huge computational demands. They proposed an

optimized solution by separately finding the new position

as in the KCF and then estimating the scale at the position.

In this way, they obtained a good balance between speed

and accuracy, reaching 24 fps. A very similar strategy was

used in [13, 48]. The same base idea has also been pro-

posed by [31], where target position and the current target

scale were selected as the one corresponding to the maxi-

mum response value among all the scales. In this case, to

reduce the computational complexity, all the model tem-

plates and processed patches are rescaled to the original

target size such that only one model is constantly estimated

and updated. However, the system can reach a processing

rate of only 7 fps. The same approach is applied in [35].

Patch-based approaches have also been used to cope

with scale changes. In [45], four patch trackers based on

the KCF modification proposed in [12] were employed.

Variations of the patches’ sizes were estimated, as in [11],

and combined in one single measure to evaluate the entire

object’s scale variation. A similar idea was proposed in

[32] where different KCF trackers were combined in a

Monte Carlo framework. While these methods could be

effective and improve the KCF performance, their main

drawback is that the computational complexity grows lin-

early with the number of patches used.

Finally, in [47], a scale change was detected by analysing

the motion flow among consecutive frames, forcing the

tracker to be reinitialized. As we will show in the following

section, the use of depth data is fundamental to obtain an

accurate and efficient estimation of scale changes.

As far as managing occlusions is concerned, only the

work presented in [33] has considered it, where a part-

based tracker was employed. When the level of response of

each part tracker was below a certain threshold, the model

of the corresponding part was not updated and that object’s

part was considered occluded. The computational com-

plexity of the method increases with the number of parts

used. The authors reported an average processing rate of 30

fps while using five parts.

4 Proposed DS-KCF tracker

In this section, we provide a detailed description of the core

modules comprising DS-KCF, which extend the KCF

tracker in a number of different ways. We integrate an

efficient combination of colour and depth features in the

KCF tracking scheme. We provide a change of scale

module, based on depth distribution analysis, that allows to

efficiently modify the tracker’s model in the Fourier

domain. Different from other works that deal with change

of scale within the KCF framework, such as [11, 31], our

approach estimates the change of scale with minimal

impact on real-time performance. We also introduce an

occlusion handling module that is able to identify sudden

changes in the target region’s depth histogram and to

recover lost tracks. Finally, a change of shape module,

based on the temporal evolution of the segmented target’s

silhouette, is integrated into the framework. To improve the

tracking performance during occlusions, we have added a

simple Kalman filter motion model.

A detailed overview of the modules of the proposed

tracker is shown in Fig. 2. Initially, depth data in the target

region are segmented to extract relevant features for the

target’s depth distribution (Sect. 4.1). Then, modelled as a

Gaussian distribution, changes in scale guide the update in

the target’s model (Sect. 4.2). At the same time, region

depth distribution is deployed to enable the detection of

possible occlusions. During an occlusion, the model is not

updated and the occluding object is tracked to guide the

target search space (Sect. 4.3). Kalman filtering is used to

predict the position of the target and the occluding object in

order to improve the occlusion recovery strategy. Further,

segmentation masks are accumulated over time and used to

detect significant changes of shape of the object (Sect. 4.4).

We note that tracking both the occluding and the

occluded objects simultaneously during occlusion bears

resemblance to multi-object tracking [29]. However, DS-

KCF tracks the occluding object to better predict the search

area for the target object. After occlusion, the occluding

object is not tracked further and its learnt model is not

maintained.

4.1 Fast depth segmentation

The first improvement on the KCF tracker we introduce is

to exploit depth information to add robustness to its RGB-

based approach. Indeed, scale changes, occlusion handling,

and shape changes are all made possible by the proposed

two-stage depth segmentation approach: (a) a fast one-

Fig. 2 Block diagram of the proposed DS-KCF tracker

J Real-Time Image Proc

123

dimensional (1D) implementation of K-means to estimate

initial clusters or regions of interest (ROI), followed by,

(b) connected component analysis that incorporates spatial

features to refine the ROI.

The computational burden of K-means [34] depends on

the number of clusters, the number of points to be clus-

tered, and the dimensionality of the features. Moreover, its

main drawbacks are that the number of clusters K has to be

known a priori and that its convergence is very sensitive to

the initial cluster centroid (dt0). We reduce the effect of this

problem by applying K-means to a tracked region’s 1D

depth histogram and hence reduce the number of features

and the number of points to be clustered. A similar

approach was proposed for colour image segmentation in

[8]. We initialize K and dt0 with the number and the cor-

responding depth values of the local maxima of the equally

spaced depth histogram, respectively. The estimated dt0 are

then good initial seeds for the K-means algorithm that

impose a reduction in its convergence time. The depth

histogram hðdjÞ is composed of j bins with depth values dj.

Each bin is assigned to the closest cluster k in the depth

space. Finally, and until the algorithm stops upon conver-

gence, the cluster centroids are updated with

dtþ1
k ¼

P
dj2k dj � hðdjÞP

dj2k hðdjÞ
: ð9Þ

In the second stage, connected components are formed

from the K-means output clusters in the image plane to

distinguish between objects located within the same depth

plane, and to remove clusters corresponding to small

regions. The target region Xobj corresponds to the cluster

with the minimum mean depth. The cluster’s mean lobj and

standard deviation robj are constantly re-estimated while

the object is tracked. Note that the target region, Xobj, will

be exploited further for managing shape changes.

The histogram h(.) bin width can influence the results of

the segmentation. This is selected adaptively according to

the tracked object’s standard deviation (robj) as well as the

noise model of the depth device [5, 25]. By characterizing

the segmented depth data with dobj and robj, we use it to

deal with the enhancements we propose.

The main advantage of the proposed approach is the

trade-off between segmentation accuracy and low compu-

tational requirements. As will be shown in more detail in

Sect. 5, our depth segmentation has a minor impact on the

overall processing time with respect to the core KCF-based

tracking.

4.2 Detecting and handling scale changes

As described in Sect. 3, one way that the KCF tracker

achieves faster throughput which is by substituting

convolution in the spatial domain with element-wise multi-

plication in the frequency domain. However, element-wise

operations expect the matrices to be of the same size.

Accordingly, we propose to estimate the target object scale

sobj by scaling the object’s template relative to its initial

depth dt0obj.

Our approach utilizes two types of scale factors: the first

is a continuous scale factor Sr ¼ dobj=d
t0
obj obtained from

the relative depth of the target, and the second is a set of

quantized scale factors Sq ¼ fsj; ð8j ¼ 1; . . .; JÞg, which

enables precomputing different matrices (the regression

targets of the training phase and the preprocessing cosine

windows in Sect. 3). The current scale is chosen to be the

closest level sj 2 Sq to Sr. We use Sq to improve com-

putational efficiency and tracker robustness as the models

and coefficients are not constantly re-estimated and at the

same time Sr helps to refine the tracker’s output as it

represents a finer change in scale.

The change of scale detection mechanism is integrated

in the KCF processing pipeline as follows. Once the new

target position has been estimated, we apply our two-step

depth segmentation algorithm and estimate the depth of the

target object dobj, Sr and the corresponding level sj 2 Sq.

When a change in scale level sj is detected, the model

template needs to be updated in the Fourier domain and we

use interpolation and decimation for increase and decrease

in scale, respectively.

This solution is more stable than model reinitialization,

as proposed for example in [47], especially in case of

very frequent changes of scale, as the object appearance

history is continuously deleted, leading to drift. The

proposed approach allows us to preserve this information.

Model resampling overhead is added when the tracker

moves to a different scale level in Sq. Yet, during

tracking, the proposed method guarantees that only one

target model at scale sobj, corresponding to the selected sj,

is kept and updated. In such cases, we avoid maintaining

and searching a pool of scale templates as many other

methods propose, such as [11, 13, 31, 35, 48], due to the

fact that the change of scale is guided by the more reli-

able and fast information provided by the depth

segmentation.

The proposed depth-based scale estimation system is

valid only under the assumption that the focal length of the

camera does not change. On that basis, the bounding box

size in the image plane and the actual size of an object have

a linear relationship that depends on the depth of the object

in the scene. Consequently, the estimated Sr indicates a

real change of scale. Should the camera focal length

change be known, the same approach can be applied, the

new focal length can be used as a correction factor, and the

value of dt0obj can be properly scaled.

J Real-Time Image Proc

123

Resizing in the Fourier domain When the target size is

increasing, it is necessary to upsample the model in the

Fourier domain. In scaling up, interpolation involves zero

padding the higher frequency Fourier coefficients to fit the

increased template size, and then adjusting the frequency

component amplitude. This is due to the duality between

the spatial and Fourier domain and can be easily shown in

the following example.

Let us for simplicity start our analysis in the spatial

domain and consider a 1D signal f(n), for which we want to

increase the number of samples by a factor M. Interpola-

tion inserts M � 1 zero samples such that the new set of

samples gðnM þ mÞ is equal to f(n) when m ¼ 0 and zero

otherwise. Now, we can express the DFT of gðnM þ mÞ as

GðkÞ ¼ 1ffiffiffiffiffiffiffiffi
MN

p
XN�1

n¼0

XM�1

m¼0

gðnM þ mÞe
�j2pkðnMþmÞ

MNð Þ

¼ 1ffiffiffiffiffiffiffiffi
MN

p
XN�1

n¼0

gðnMÞe �j2pkðnMÞ=MNð Þ

¼ 1ffiffiffiffiffiffiffiffi
MN

p
XN�1

n¼0

f ðnÞe �j2pkðnMÞ=MNð Þ ¼ FðkÞffiffiffiffiffi
M

p ;

ð10Þ

which shows how the Fourier coefficients G(k) of the

upsampled signal g can be calculated starting from the

coefficients F(k) of the original signal, for the scaling

factor M. Importantly in DS-KCF, the zero Fourier coef-

ficients are substituted by the corresponding ones from the

new patch.

When the target is reducing in size, decimation retains

the lower portion of the coefficients and discards those of

the highest frequencies. In fact, while increasing the spatial

sampling in the image, the frequencies spanned by the DFT

are reduced [16].

To gain an intuition for the efficacy of this approach,

consider upsampling and downsampling an image in the

Fourier domain. When upsampling, higher-resolution spa-

tial features are interpolated—avoiding a pixelation in the

upsampled image. Conversely, when downsampling, the

coefficients representing lower frequencies are retained as

the image is now at a coarser resolution. In both cases,

previous models’ information can be partially preserved

and used to build a robust tracker.

In our case, rather than zero padding the previous

model’s Fourier representation we instead pad it with the

coefficients from the current frame and adjust the Fourier

gain accordingly—specifically it is set to one.

Scale change parameter selection: accuracy versus

processing speed To analyse how the proposed multi-scale

handling module affects the performance of DS-KCF

tracker, we use the zcup_move_1 sequence from the

Princeton RGB-D dataset [39] as it contains smooth,

decreasing scale changes up to 0.5 of the initial target size.

We then reverse the frame in order to obtain a sequence

with an increasing scale change up to twice the initial

object size.

If the scale-steps represented in Sq are small, the model

will be regularly updated and the scale of the model will

closely match that of the tracked region being considered.

This has a computational overhead as the model will be

regularly interpolated and decimated in the Fourier

domain. Conversely, if the scale-steps are relatively large,

the situation will arise where the model is either too small

or too large.

If the model is too small, the tracked region often drifts

within the margin of the tracked object, thus reducing

precision. If it is too large, the background is incorporated

into the model and the tracked region is prone to remain

‘stuck’ to background when the target moves. Note that

small discrepancies in scale have minimal impact on

precision.

Figure 3 shows the area under curve (AUC) measure for

the forward and reverse zcup_move_1 sequences against

different scale-steps, i.e. the difference between each pair

of consecutive values, in Sq. The grey line in Fig. 3 shows

results for when the tracker’s output is computed using the

quantized size in Sq and the blue line when the tracker’s

output is estimated using Sr. The dotted purple line rep-

resents the AUC values for the KCF tracker. The values

have been normalized with respect to the maximum, and

the black line is the normalized fps processing rate.

It is apparent from this example that the scale-steps

range of values between 0.08 and 0.2 provide a good trade-

off between performance and processing rate. Note though,

that compared to the KCF, the proposed DS-KCF obtains

better results even for very wide scale-step.

For both test sequences, the use of Sr improves the

performance of the tracker especially for larger scale-step.

However, Sr, considered in isolation, does not reduce the

error in precision, which generally remains unchanged, but

can be very high, especially in those cases where the scale

of the object increases. A qualitative example is shown in

Fig. 4b where only a portion of the object is tracked (the

inner red bounding box), due to a mismatch of the real

object size and current Sq value. The overlap between the

tracked object and the real one is increased if the output of

the tracker is corrected by using Sr (the green bounding

box), improving the performance when considering the

success plot. However, the position error remains the same,

as the tracker is still centred in the same position. When the

scale-step selected is properly chosen, the object is cor-

rectly tracked (see Fig. 4c).

In Fig. 5, we illustrate how an erroneous scale-step

results in an inferior precision curve for the reversed

zcup_move_1 sequence. Finally, Fig. 6 shows another

example of how managing scale changes affects the

J Real-Time Image Proc

123

processing throughput of the proposed tracker. The overlap

score (between the target groundtruth bounding box and

the tracked object bounding box) for each frame of the

zcup_move_1 sequence is reported with blue markers, and

the normalized processing time is reported with black

markers. The positions of the changes of scale are marked

with a red circle. Note that when a change of scale is

detected, the processing time of the corresponding frame

drops significantly, and that the processing rate increases in

correspondence to the target scale reduction towards the

end of the sequence. The overlap score for the KCF tracker

(magenta markers) shows that DS-KCF outperforms it,

with particular loss of accuracy in the last part of the

sequence where the change of scale is present.

In all our experiments, we used scale-step = 0.1. Fur-

thermore, the estimated Sr was used to further improve the

tracker performance.

4.3 Detecting and handling occlusions

We model the tracked object’s depth distribution as a

single Gaussian and identify candidate occluding objects as

the regions not belonging to this model. The work proposed

in [39] based on similar concepts as a depth cue is used to

discriminate the tracked object from an occluded one.

However, our approach differs from [39] in that it is

optimized to keep and exploit the advantages of KCF

tracking core. In particular, we introduce local search for

target candidates by considering depth continuity between

the occluded target and the candidates. The occluding

regions are segmented with our fast depth segmentation

method described earlier and are tracked with the KCF. We

use a linear, constant velocity model, Kalman filter to track

the position of both the occluded target and the occluding

Fig. 3 Scale-step analysis: a zcup_move_1 sequence, b reversed

zcup_move_1 sequence. Normalized AUC obtained by using the

quantized size in Sq and Sr , in grey and blue, respectively;

normalized processing rate (fps) in black. Dashed purple line is the

normalized AUC for the KCF tracker. The x axis represents the scale-

step used

Fig. 4 Example of object scale

change: a initial tracked object,

b object wrongly tracked with

scale-step = 0.4, c object

correctly tracked with scale-step

= 0.1

Fig. 5 Precision plot for the reversed zcup_move_1 sequence for

different scale-step values 0.1 (red) and 0.4 (black)

J Real-Time Image Proc

123

object during occlusions (see later for details). The state

variables of the Kalman filter are the position and velocity

of the bounding box centroids of both objects. The use of

the 2.5D data (image coordinates with real-world depth)

facilitates optimization of the search space [see Eq. (12)

later] and yields a more accurate estimate of the position of

the occluded target. This is another improvement on our

earlier version of DS-KCF [6] which boosts the tracking

performance as will be shown in Sect. 5.

Occlusion detection We define lobj as the mean depth of

the tracked object and robj as its standard deviation. Given

a segmented region Xobj, the corresponding rectangular

ROI Cobj, and its corresponding patch z used by the core

KCF tracker, then occlusion is detected if

U Cobj

� �
[kocc

� �
^ dfðzÞmax\kr1
� �

; ð11Þ

where UðCobjÞ is the fraction of pixels belonging to Cobj up

to two standard deviations from the object’s mean. We

have determined empirically that an occlusion should be

detected when approximately a third of Cobj is occupied by

the occluding object, i.e. kocc ¼ 35%. The second term in

Eq. (11) reduces false detections of occlusion in the case of

objects moving quickly towards the camera. In such situ-

ations, the overlap condition can be satisfied due to a fast

shift in the object’s depth distribution. However, the

maximum response of our tracker, dfðzÞmax, would still be

high, with dfðzÞmax obtained by weighting f ðzÞ in Eq. (7)

with a sigmoidal function that takes into account the dis-

tance between the depth data and lobj to guarantee conti-

nuity on depth. The value of kr1 was also determined

empirically as kr1 ¼ 0:4.

When Eq. (11) is not satisfied, the tracking process pro-

gresses normally and the model is updated according to the

current scale and the tracker is ready to process the next

frame. Conversely, when Eq. (11) is true, the tracker enters in

the occlusion state and a new KCF tracker is initialized for

tracking the occluding object. Note, only a portion of the

occluding object is contained in Cobj. To obtain the entire

occluding object and the depth values of locc and rocc, the

connected component is extracted from the depth frame.

Occlusion state In a state of occlusion, a search region

Ci
search at frame i is defined, and its response is computed to

detect the reappearance of the target. The target object is

highly likely to re-emerge in those image areas gradually

uncovered by Cobj.

We identify the region where target candidates are

searched as

Ci
search ¼ Ci�1

occ [Ci�1
bc [Ci

occ [Ci
KF; ð12Þ

where Ci�1
bc is the region previously occupied by the best

target candidate (Fig. 7). For tracking the occluding object,

the accuracy of the KCF tracker is sufficient for our pur-

poses as our goal is to only have a rough estimate of Cocc.

The last term, CKF, represents the region corresponding to

the estimated target position provided by the Kalman filter.

For each cluster with depth mean ln and position cn in

the image plane, we compute the maximum value of the

normalized response dfðzÞn . The best target candidate cor-

responds to the one with maximum response dfðzÞn . Target

tracking is resumed when

Fig. 6 Change of scale effect

(zcup_move_1 sequence).

Overlap score: blue markers for

DS-KCF and magenta markers

for KCF, normalized processing

time black square markers,

detected changes of scale are

enclosed in the red circle.

Average processing rate is

reported in green

Fig. 7 Occlusion search region: Ci
search (blue line), Ci

occ (yellow line),

Ci
obj (red line), CKF (green line)

J Real-Time Image Proc

123

U Cbcð Þ\koccð Þ ^ dfðzÞn [kr2
� �

; ð13Þ

with kr2 ¼ 0:2 empirically determined.

The computational requirements of DS-KCF could be

significantly affected during occlusion if the entire Cbc is

scanned. We reduce the computational requirements by

enabling the response estimation only in specific key areas,

i.e. the clusters in Csearch. The search for the best candidate

can be further optimized by parallelizing the estimation of

the response in each cluster, allowing us to reduce the impact

of occlusions on the overall processing rate even further.

Kalman filtering of the target An important contribution

to the definition of the search area Csearch in Eq. 12 comes

from CKF. Assuming the target will move at constant

velocity, CKF represents a good estimate of the target

candidate region by the Kalman filter, and this is particu-

larly helpful during occlusions. Applying the Kalman filter

to the 2.5D coordinate of the target’s centroid, the state of

the target is modelled as p ¼ u; v; d; _u; _v; _d, where u and v

are the centroid location, n is the image plane, and d is the

depth mean value of the tracked object. The system state

and observation equations are

pt ¼ Ast�1 þ gt�1

¼

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775
pt�1 þ gt�1;

ð14Þ

ot ¼ Hpt þ mt

¼
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

2
64

3
75pt þ mt;

ð15Þ

where o is the observation vector obtained with the DS-

KCF (target position and d estimated as in Sect. 4.1). A and

H are, respectively, the constant velocity model state

transition matrix and the measurements matrix, respec-

tively, and g and m represent model uncertainty and noise of

the measurements. In summary, during normal tracking the

DS-KCF output is used to update the Kalman filter system

state. If the DS-KCF enters into occluded state, the Kalman

filter state is used to predict the position of the target (CKF

in Eq. 12).

4.4 Detecting and handling shape changes

As in previous works in object tracking, our aim is to find

the smallest bounding box that encapsulates the tracked

object. While Sect. 4.2 deals with changes in scale, the

bounding box is likely to change its aspect ratio due to in-

plane or out-of-plane rotations for rigid objects or due to

changes in shape for deformable objects.

The 2D projection of any 3D object’s bounding box may

be faithfully represented by combining a change in scale

with a change in aspect ratio. Note that for some elongated

objects that are rotated at an oblique angle in the image

plane, this representation is less useful as the majority of

the region defining the target contains background infor-

mation. However, in most situations this representation

offers clear advantages over the usual paradigm where

bounding box aspect ratio is fixed, for example in human

pose transitions such as lying to sitting to standing. Simi-

larly, when an object is occluded, the aspect ratio of the

tracked bounding box should change so it is confined to the

unoccluded part of the object. This section accordingly

enables tracking the change in aspect shape of the tracked

bounding box, as a result of shape change, during occlusion

and after the object emerges from behind an occluder. To

the best of the authors’ knowledge, the proposed approach

is the first to propose a solution to change of shape han-

dling in the KCF framework.

One of the major strengths of KCF and DS-KCF is that

they operate solely in the frequency domain. While scaling

in DS-KCF is achieved via interpolation and decimation,

altering the aspect ratio of the tracked patch in the Fourier

domain is problematic as spatial information is encoded in

phase. The main idea of the proposed change of shape

module is to maintain the advantages of the frequency

domain operation at the core of KCF. Specifically, we wish

to avoid the computational load that would be incurred to

reinitialize or adapt the target model in the spatial domain

every time there is a significant change in shape. Hence, we

fix the aspect ratio of the tracked patch, and the target

model, and subsequently adjust the aspect ratio of the new

shape of the object.

We tried two approaches for selecting a tracking patch

with a fixed aspect ratio (rectangular or square) The first

approach uses the aspect ratio extracted from the initial

rectangular template and keeps it rectangular while the

template is updated as the object is segmented and tracked.

The second approach is based on a square patch (i.e. aspect

ratio is maintained as 1) centred on the target region, which

is scaled such that the edge length always matches the

shortest spatial extent of the target object in the image

plane. This square is then scaled such that it fits the depth-

based segmentation. After the patch is tracked, the spatial

extent of the target object is adjusted based on the depth

segmentation to encapsulate the full extent of the object.

To avoid drifts due to segmentation failure, a temporal

window is considered. The union of the segmented regions,

Xobj, from the last n frames is used,

J Real-Time Image Proc

123

Xshape ¼
[n
t¼1

Xt
obj: ð16Þ

since it produces better results than the average.

As in Sect. 4.3, we use the symbol C to indicate the

region corresponding to the segmented area X and the

tracked target area. The reported bounding box Coutput is

computed such that

Ct
output ¼

Ct
shape

Ct
shape

Ct�1
output

\0:1

Ct�1
output otherwise

8><
>:

ð17Þ

The threshold of 10% increase is used to maintain smooth

shape transitions and ensure the depth model, lobj and robj,

does not drift into other depth regions. An example is

shown in Fig. 8.

When using a square patch, if an object is occluded, and

the tracked square patch remains unoccluded, the occlusion

state would not be detected. This affects the estimation of

the object’s depth model, lobj and robj. Failing to detection

occlusions would also affect the occlusion recovery

[Eq. (13)]. Moreover, the tracker’s maximum response

dfðzÞmax would not correspond to the object’s centroid

which is required for measuring the tracker’s localization

performance. For this, we use the centroid of the seg-

mentation area, Coutput, to indicate the object’s current

position. However, results show that the square patch

produces less accurate tracking in cases of partial occlu-

sions. On the other hand, when a rectangular patch of fixed

aspect ratio is used, the tracker’s response to major

occlusions would be adversely affected. For these reasons,

we use the rectangular template in our shape handling

module.

Handling shape changes: pros and cons We illustrate

the advantages of being able to manage shape changes

using two sequences, (a) child_no1 from [39] which shows

a child squatting to play, and thus, the target’s aspect ratio

changes and (b) the milk sequence from [15] which depicts

pouring from a milk box and thus has an in-plane rotation

of a rigid object.

In Fig. 9, qualitative results for DS-KCF with and

without shape handling are reported. The first column

contains the initial target, while the second column shows

the object after the change of shape. DS-KCF with shape

handling is able to track the object more accurately. In the

milk example, even though shape handling improves the

results, it does not fully segment the object due to the

constraint on smooth shape changes in Eq. (17).

In Fig. 10, the overlap scores for DS-KCF with and

without shape handling are reported for the two sequences.

For the child_no1 sequence (Fig. 10a), the graph shows

that the accuracy is comparable when the shape of the

object remains constant. However, when a change of shape

takes place (within the two vertical dotted lines), better

accuracy is obtained through shape change handling. The

analysis of the performance on the milk sequence shows

both the advantages and drawbacks of shape handling.

During changes of shape, it is evident that the shape han-

dling functionality produces superior results. However, the

accuracy drops later as the hand and milk box have similar

depths, resulting in a combined segmentation. The same

occurs when the milk box is repositioned on the table. As

Fig. 8 Example of Xshape, Cobj for the rectangular and square

templates, and Cshape

Fig. 9 Change of shape examples for sequences child_no1 (a, b) and

milk (c, d). DS-KCF with shape handling are in blue, and without in

red

J Real-Time Image Proc

123

previously discussed, there is a trade-off between seg-

mentation and the tracking accuracy.

Change of shape module integration The change of

shape module exploits the information extracted within the

other DS-KCF modules with minimal impact on the system

throughput (as evaluated in Sect. 5). Effectively, this

module takes advantage of the estimated target depth dis-

tribution and segmentation mask (see Sect. 4.1) that is

accumulated in Eq. 16. Thus, it is possible to capture the

shape dynamics and to identify a change of shape when

Eq. 17 is satisfied. The detected changes of shape modify

only the tracker’s output, while its model is updated nor-

mally based on the current scale.

5 Experimental results

We now provide an in-depth evaluation of the proposed

tracker’s performance using the Princeton dataset [39]

which was recorded with the Microsoft Kinect. It com-

prises 100 videos containing both RGB and depth data. The

manual annotated groundtruth is available for five videos

that form the validation set and the outcome for the test set

can be obtained by submitting the tracker’s output online1

on the comparison site set up by author’s of [39]. It must be

noted that we discovered synchronization errors between

the RGB and depth data for all of the videos in the

Princeton dataset [39]. These can affect the stability of

RGB-D trackers and the validity of the results as the

groundtruth is based solely on the RGB frames. In the light

of this, we realigned the data streams, and consequently the

groundtruth, for the five validation sequences. The videos

depict indoor scenes with object depth values ranging from

0.5 to 10 m. Different targets are present in the scene, e.g.

humans, animals, and rigid objects. Each scene presents a

different level of background clutter, ranging from simple

and static backgrounds to more complex scenes, for

example a university hall. Additionally, there are sequen-

ces with people moving around their environment with

intermittent occlusions.

We evaluate the performance of the tracker by consid-

ering two widely used scores, precision and success plots

(see [43]). Precision plots are obtained by computing the

percentage of frames for which the location error is below a

certain threshold. As the representative precision score, we

use the value obtained for the threshold as 20 pixels (P20),

as proposed in [43]. Success plots measure the bounding

box overlap between the tracked object and the groundtruth

and provide the percentage of successful frames where the

overlap is larger than a threshold as it is varied from 0 to 1.

For these, we report the area under curve (AUC). We also

provide the computational performance of the methods in

terms of processed frames per second.

We compare the proposed approach with different state-

of-the-art RGB and RGB-D trackers that have been tested

on the Princeton dataset [39]. All our experiments (for both

MATLAB and C?? code) have been carried out on a

workstation with a quad-core Intel I7-3770S 3.10GHz CPU

with 8GB of RAM.

5.1 Feature analysis

The goal of this section is to analyse the performance of the

proposed tracker when using different RGB and depth

feature combinations and show that the use of depth data is

fundamental to boost the tracking performance. As previ-

ously mentioned in Sect. 3, both raw colour and HoG

features were deployed in the original KCF [22] where it

was demonstrated that HoG features provide higher accu-

racy without compromising real-time performance. Hence,

we analysed five different HoG-based feature combina-

tions: colour data (hog_colour), depth (hog_depth), two

independent models based on colour and depth and

obtaining the overall response as the their linear combi-

nation (hog_linear), using the same two models but

selecting the maximum response (hog_max), and finally

combining colour and depth for a concatenated feature

Fig. 10 Change of shape effect for child_no1 sequence (a) and milk

(b). Overlap score for DS-KCF with shape handling is in blue and

without in red. Strong changes of scale are enclosed between black

vertical lines

1 http://tracking.cs.princeton.edu/eval.php.

J Real-Time Image Proc

123

http://tracking.cs.princeton.edu/eval.php

representation (hog_concat). Furthermore, we tested the

proposed method with state-of-the-art RGB-D features

(named gPb?D) for object segmentation and object

recognition introduced in [17, 18]. These features combine

local geometric gradients, i.e. depth gradients, convex and

concave normal gradients, and colour-based gradients of

brightness, colour, and texture. Even if the computational

cost of gPb?D features is not sustainable for real-time

tracking scenarios, it is important to verify their impact on

the tracker’s accuracy. For the sake of simplicity, we report

the results for the DS-KCF tracker without using the

change of shape handling module as the validation set does

not contain sequences with significant shape variations.

Precision and success plots computed on the Princeton

validation set are shown in Fig. 11. The curves show that

hog_colour, hog_max, and hog_concat give very similar

results, while hog_linear yields the worst results. AUC,

P20, and fps measures for these curves (obtained with

MATLAB) are reported in Table 2 with the best results

indicated in bold text. KCF clearly is very fast but has

significantly poorer average performance. The best average

performance for both AUC and P20 measures (at 79.5%

and 94.2%, respectively) is obtained when using hog_-

concat, at a respectable 40 fps. The state-of-the-art gPb?D

features have a considerably lower performance at a much

lower frame rate, even if they are computed in small image

patches.

In the rest of the experiments, hog_concat was used as

the feature of choice by the proposed DS-KCF tracker.

5.2 Real-time performance and implementation

details

We provide a detailed analysis of the real-time perfor-

mance of the proposed DS-KCF and its main modules by

considering the different scenarios contained in the 100

sequences of the Princeton dataset. We present the results

of the MATLAB implementation of the DS-KCF with and

without the new shape handling module and the C??

implementation of the DS-KCF (without shape handling).

Table 3 shows the average processing rate for each of

the five sequences in the Princeton validation set, and the

percentage2 or processing load of the total time spent by

each fundamental module of the system. The modules

considered were: MR—evaluation of the maximum

response relative to operations in Eq. (7), Seg?Occ—target

patch segmentation, as in Sect. 4.1, and occlusion estima-

tion as in Eq. (11), TRocc—occluder tracking, OccSolve—

occlusion solving as in Eq. 12, SE—change of scale esti-

mation as in Sect. 4.2, and finally MU—the model update

as presented in Sect. 3.

One main advantage of the proposed approach is that

change of scale estimation is optimized, thanks to the use

of depth, without analysing any search space. As discussed

in Sect. 4.2, maintaining and searching a pool of scale

templates, as many other methods propose, such as

[11, 13, 31, 35, 48], require a higher computational cost

since the convolution operations between the different

scale templates and the tracked patch has to be repeated for

all the scales (or a subset of it). The benefits of this aspect

of our approach are very clear if we consider the SE col-

umn in Table 3 where for all the proposed trackers the SE

processing load is lower than 0:5%. In the case of

sequences without occlusions (child_no1 and zcup_-

move_1), the modules that have the highest processing load

are MR and MU, while the proposed depth segmentation

has generally very little impact, especially for our C??

implementation, and provides a good trade-off between

accuracy and processing speed without affecting the KCF

tracking core speed.

In the sequences that include occlusions, we see that

modules TRocc and OccSolve affect the tracker’s perfor-

mance considerably. During occlusion, we track the

occluding object and we need to test the response of the

tracker in different candidate regions. Even if the candidate

regions are efficiently selected, we are repeating the same

very demanding operations in MR several times. With the

Fig. 11 Different features and importance of depth—KCF versus DS-

KCF: (top) average precision plot and (bottom) average success plot

2 The percentages in each row may not sum to 100 due to other

processing overheads.

J Real-Time Image Proc

123

proposed C?? implementation, we are able to compute

the response dfðzÞmax in all the different regions in parallel,

reducing the impact of this module.

The computational performance of DS-KCF is clearly

reduced when change of shape handling is enabled, e.g. see

the Seg?Occ column in Table 3.

A comparison between the different approaches and

implementations is given in Table 4. The Princeton test

dataset [39] has been partitioned into different catego-

rizations according to the target characteristics, such as

object type, size, speed of movement, presence of occlu-

sions, and motion type. We report minimum, maximum,

and average processing rates on the 95 test sequences of the

Princeton dataset for some of these different categoriza-

tions, i.e. target size, speed of movement, and presence of

occlusion. The C?? version of the DS-KCF provides a

remarkable average frame rate of 186 fps with a an average

minimum value for all the sequences of over 67 fps. This is

a very important result that indicates that even in the worst

case scenario the provided algorithm operates at frame

rates exceeding those available on typical RGB-D devices

(around 30 fps for Kinect and Asus Xtion). Furthermore, on

average, the MATLAB versions guarantee real-time per-

formance with a processing rate greater than 35 fps and a

Table 2 Performance of the DS-KCF with different features on the Princeton dataset’s [39] validation set

Validation set [39]

bear_front child_no1 zcup_move_1 face_occ5 new_ex_occ4 Average

AUC P20 fps AUC P20 fps AUC P20 fps AUC P20 fps AUC P20 fps AUC P20 fps

KCF [22] 18.6 19.8 117 66.3 96.8 55 72.5 100.0 164 79.7 93.1 88 46.1 56.8 92 56.6 73.3 103

DS-KCF
hog_colour

73.6 82.4 64 83.2 93.7 33 82.3 100.0 105 69.9 80.7 38 78.1 90.2 61 77.4 89.4 60

DS-KCF
hog_depth

81.9 91.3 54 69.0 91.3 34 78.8 100.0 111 82.2 95.1 51 53.5 58.5 33 73.1 87.2 57

DS-KCF
hog_concat

75.7 85.3 42 76.5 92.1 19 81.5 100.0 81 85.5 98.6 22 78.3 95.1 38 79.5 94.2 40

DS-KCF hog_max 72.1 81.3 45 83.1 92.1 20 82.3 100.0 74 79.4 92.2 37 78.1 90.2 40 79.0 91.2 43

DS-KCF
hog_linear

67.7 74.2 35 82.6 92.1 20 82.5 100.0 75 85.0 98.6 26 10.5 9.1 67 65.6 74.8 45

DS-KCF gPb?D 49.6 55.2 4 67.5 88.9 2 81.9 100.0 8 71.3 91.4 3 78.7 100.0 7 69.8 87.1 4

All measures are in percentages, except for the fps columns

Table 3 Processing rate results: module processing loads (percentages) and average processing rate (fps) for different videos of the Princeton

dataset validation set [39]

Validation set [39] Algorithm MR Seg?Occ TRocc OccSolve SE MU Avg. fps

bear_front DS-KCF no shape 15.9 12.3 12.6 38.4 0.1 15.9 45.9

DS-KCF no shape C11 37.1 4.0 15.2 8.8 0.1 30.3 127.4

DS-KCF 16.7 26.4 12.3 22.8 0.5 16.8 39.6

child_no1 DS-KCF no shape 42.8 11.5 – – 0.1 44.3 18.9

DS-KCF no shape C11 47.6 9.8 – – 0.2 42.0 165.2

DS-KCF 37.1 23.1 – – 0.1 38.4 16.2

zcup_move_1 DS-KCF no shape 34.7 27.8 – – 0.2 34.2 83.2

DS-KCF no shape C11 48.8 6.9 – – 0.1 43.0 223.3

DS-KCF 27.3 39.8 – – 0.2 29.6 61.3

face_occ5 DS-KCF no shape 22.8 7.8 19.4 25.6 0.1 23.0 21.8

DS-KCF no shape C11 37.8 5.0 10.4 13.3 0.0 30.8 206.3

DS-KCF 18.6 24.3 15.7 21.1 0.1 19.0 17.4

new_ex_occ4 DS-KCF no shape 31.8 15.7 11.9 11.4 0.1 27.4 37.3

DS-KCF no shape C11 37.1 4.5 16.9 5.3 0.2 32.3 89.8

DS-KCF 24.0 22.7 10.7 16.2 0.1 24.4 34.0

All codes are in MATLAB, unless stated otherwise

J Real-Time Image Proc

123

minimum processing rate of over 17 fps. As previously

mentioned, DS-KCF results in slightly lower processing

rate when the change of shape module is activated.

From the occlusion column of Table 4, we can see that, as

discussed above, the presence of occlusions slows the pro-

posed DS-KCF. On average, the processing rate is reduced

by about 40% compared to sequences without occlusions.

However, the achieved performance is still considerable

with an average of 147 fps and a minimum of 40 fps in the

case of the C?? version. For the MATLAB version, the

average processing rate is &30 fps with a minimum value of

&10 fps. Finally, the size of the tracked object also affects

tracking performance, while the speed of the object does not

affect the tracker processing rate significantly.

The C?? implementation is based on a publicly available

object-oriented KCF tracker implementation [19]. This was

extended and specialized to produce the DS-KCF tracker.

For this extension, we made use of a number of libraries,

including; OpenNI for real-time capturing from consumer

RGB-D cameras, OpenCV for optimized real-time image

operations, and Intel’s Thread Building Blocks (TBBs) for

cross-platform parallelization. The use of TBB for paral-

lelization limits our implementation to scale with the number

of cores available on the CPU and makes no use of the GPU,

except implicitly through some OpenCV operations. TBB

was used to improve the performance of the OccSolve

module. As previously mentioned, in this module the tracker

must find the best candidate region from a set of regions,

which can be evaluated independently. Evaluating the

maximum response of each candidate region inflicts a per-

formance penalty which can be mitigated by spreading the

load across all of the machine’s available cores. This choice

of libraries allowed us to optimize performance without

compromising platform independence, so our implementa-

tion has been tested on Windows and Linux.

5.3 Results with Princeton dataset

Among other state-of-the-art RGB-D segmentation algo-

rithms, the sDasp algorithm presented in [42] provides the

best trade-off between accuracy and processing time. How-

ever, it can only process a RGB-D frame (resolution of

640x480) at 2 fps and a typical object patch (for example

235x145 from the validation set of [39]) at &18 fps with a

C?? implementation. This processing rate will constitute a

bottleneck for the entire tracking process. Moreover, as

shown in Fig. 12 the target segmentation results obtained

with the proposed fast segmentation approach (third column)

are very similar to the ones obtained by sDasp (fourth col-

umn)—even in the occluding scene example in the third row.

We now compare the results of our proposed DS-KCF

tracker against 19 other state-of-the-art methods on the

Table 4 Processing rate results:

minimum, maximum, and

average processing rate (fps) for

different video categories and

the entire validation set of the

Princeton dataset [39]

Categories Property Processing DS-KCF

no shape

DS-KCF (C??)

no shape

DS-KCF

Size Small Min 20.6 79.7 17.5

Max 113.2 408.3 108.3

Avg 44.4 228.3 35.7

Large Min 19.8 47.0 17.7

Max 113.9 202.2 106.7

Avg 42.0 113.4 34.9

Movement Slow Min 22.2 68.4 19.7

Max 112.8 328.1 108.7

Avg 46.6 196.7 37.8

Fast Min 18.3 66.9 15.4

Max 114.1 336.7 106.7

Avg 40.4 175.0 33.0

Occlusion Yes Min 10.7 40.0 10.2

Max 105.5 298.0 99.7

Avg 32.6 147.7 28.5

No Min 33.5 105.6 27.8

Max 124.3 379.7 118.8

Avg 58.5 238.6 44.9

Across 95 sequences Min 20.3 67.7 17.6

Max 113.4 332.4 107.7

Avg 43.5 186.0 35.4

All codes are in MATLAB, unless stated otherwise

J Real-Time Image Proc

123

Princeton test dataset [39]. These other RGB-D trackers

are: OAPF [36], RGBDOcc?OF [39], RGBD?OF [39],

PCdet_flow [39], SAMF?Depth [31], PCdet, and PCflow

from [39]. We also compare the proposed approach with

the following RGB trackers: KCF [22] (experiments run by

us), RGBOF [39], Struck [21], VTD [28], RGB [39], TLD

[24], MIL [1], OF [4], CT [46], SemiB [40]. We also

include two depth-based trackers: LDPSTRUCK [2], Dhog

[39].

Table 5 summarizes the results obtained by all the dif-

ferent algorithms , showing the average AUC obtained for

all 95 videos and for each of the different video catego-

rizations. Moreover, we report an average ranking of the

algorithms (second column) by considering the individual

rankings under the different categorizations. The methods

in the table are ordered according to the best performance

obtained, i.e. by their average rank. The representation in

Table 5 is as proposed in [39]. However, as the number of

sequences in each category is different and some videos

belong to more than one category, this ranking is not a

perfect valid summary of the results. The combined anal-

ysis of AUC and Avg. Rank would be more appropriate for

a detailed look (see below).

Our proposed method is ranked third (in MATLAB),

fourth (without shape handling in MATLAB), and fifth

(without shape handling in C??). The small difference

between the accuracies obtained by the MATLAB and

C?? implementations of DS-KCF arises since the two

implementation are completely independent and use dif-

ferent libraries for completing all the operations, such as

the Fourier transformations, matrix operations, and also the

computation of the fast segmentation approach. Only the

HoG feature extraction module belongs to the same soft-

ware library.

As may be expected, DS-KCF scores a better Avg. Rank

and average AUC when with shape handling than when

without—for example, it scores an average AUC of 71.9%

with shape handling compared to 69.3% otherwise. The

shape handling DS-KCF achieves better results for the

human and animal categories, as the proposed approach is

well suited for the gradual changes of shape exemplified by

human and animal movements in the dataset. However, the

number of examples in the Princeton test dataset that

include shape changes is very limited; hence, our ‘with and

without shape handling’ results are not immensely differ-

ent. We address this a little later. Also, the system can fail

in certain cases where the shape changes are generally fast

and the tracked objects are very close to the ground plane

(as in the case of the turtle moving in wuguiTwo_no

sequence in Fig. 13b). Figure 13a shows another example

of how a wrong segmentation can lead to a partially

incorrect object shape estimate. In this example, the depth-

based segmentation includes the hair, which is effectively

at the same depth as the tracked object (i.e. the face), hence

leading to lower accuracy.

The comparison of occlusion handling performance of

the DS-KCF and the no-shape version proposed in our

previous work [6] is given in Table 5, where we see a 1.6%

improvement in performance with an overall accuracy of

64.9%—that is the second best result for the occlusion

category.

Overall, only two approaches, OAPF [36] and

RGBDOcc?OF [39], obtain a higher Avg. Rank (by

&0.6% more) and a higher average AUC value (by

&1.4% more). However, as reported by their authors, these

approaches achieve a very low processing rate of less than

1 fps. Our proposed method has an average processing rate

ranging from 35 to 43 fps for its MATLAB implementation

and 187 fps for its C?? version.

5.4 More on shape handling

Change of shape events in the Princeton Dataset is rare

and, as evident in the examples in Fig. 10, rather limited to

a few frames only. This means the efficiency of the shape

handling power of DS-KCF requires further verification.

To this purpose, we examine DS-KCF on our own special-

purpose RGB-D dataset (RotTrack) containing different

change of shape scenarios.

RotTrack comprises five RGB-D sequences containing

four different types of change of shape as shown in Fig. 14:

Fig. 12 Example of segmented objects from [39]. Colour and depth

data (first two columns), proposed segmentation (third column), RGB-

D segmenter sDasp [42] (fourth column)

J Real-Time Image Proc

123

T
a
b
le

5
E

v
al

u
at

io
n

re
su

lt
s:

A
U

C
an

d
co

rr
es

p
o

n
d

in
g

ra
n

k
in

g
s

(i
n

p
ar

en
th

es
es

)
u

n
d

er
d

if
fe

re
n

t
ca

te
g

o
ri

za
ti

o
n

s

M
et

h
o

d
A

v
g

.
A

v
g

.
T

ar
g

et
ty

p
e

T
ar

g
et

si
ze

M
o

v
em

en
t

O
cc

lu
si

o
n

M
o

ti
o

n
ty

p
e

R
an

k
A

U
C

H
u

m
an

A
n

im
al

R
ig

id
L

ar
g

e
S

m
al

l
S

lo
w

F
as

t
Y

es
N

o
P

as
si

v
e

A
ct

iv
e

O
A

P
F

[3
6

]
2

.3
7

3
.1

6
4

.2
(5

)
8

4
.8

(1
)

7
7

.2
(2

)
7

2
.7

(3
)

7
3

.4
(1

)
8

5
.1

(1
)

6
8

.4
(3

)
6

4
.4

(3
)

8
5

.1
(1

)
7

7
.7

(4
)

7
1

.4
(1

)

R
G

B
D

O
cc
?

O
F

[3
9

]
2

.3
7

3
.3

7
4

.0
(1

)
6

2
.6

(5
)

7
8

.4
(1

)
7

8
.1

(1
)

6
9

.7
(3

)
7

6
.3

(3
)

7
2

.2
(1

)
7

2
.0

(1
)

7
5

.2
(6

)
8

2
.3

(1
)

7
0

.0
(2

)

D
S
-K

C
F

2
.9

7
1

.9
7

0
.9

(2
)

7
0

.8
(2

)
7

3
.6

(6
)

7
3

.9
(2

)
7

0
.3

(2
)

7
6

.2
(4

)
7

0
.1

(2
)

6
4

.9
(2

)
8

1
.4

(2
)

7
7

.4
(5

)
6

9
.8

(3
)

D
S
-K

C
F
n
o
sh
a
p
e

[6
]

4
.3

6
9

.3
6

7
.0

(3
)

6
1

.2
(6

)
7

6
.4

(3
)

6
8

.8
(5

)
6

9
.7

(4
)

7
5

.4
(5

)
6

6
.9

(4
)

6
3

.3
(4

)
7

7
.6

(5
)

7
8

.8
(3

)
6

5
.7

(5
)

D
S
-K

C
F
n
o
sh
a
p
e
C
1
1

4
.5

6
8

.1
6

4
.5

(4
)

6
4

.3
(4

)
7

4
.3

(5
)

6
6

.3
(6

)
6

9
.4

(5
)

7
6

.5
(2

)
6

4
.7

(6
)

6
0

.1
(5

)
7

9
.0

(4
)

7
9

.6
(2

)
6

3
.7

(6
)

R
G

B
D
?

O
F

[3
9

]
5

.0
6

8
.1

6
3

.9
(6

)
6

5
.3

(3
)

7
4

.5
(4

)
7

1
.5

(4
)

6
5

.5
(6

)
7

3
.4

(7
)

6
5

.9
(5

)
6

0
.1

(6
)

7
9

.0
(3

)
7

4
.0

(7
)

6
5

.8
(4

)

P
C

d
et

_
fl

o
w

[3
9
]

7
.3

5
8

.9
5

0
.5

(7
)

5
1

.6
(8

)
7

2
.7

(7
)

6
3

.4
(7

)
5

5
.5

(8
)

7
3

.9
(6

)
5

3
.0

(7
)

5
5

.0
(7

)
6

4
.4

(1
0

)
7

5
.5

(6
)

5
2

.7
(7

)

S
A

M
F
?

D
ep

th
[3

1
]

9
.0

5
4

.0
4

4
.8

(1
0

)
4

9
.6

(1
0

)
6

7
.0

(8
)

5
2

.4
(9

)
5

5
.2

(9
)

6
5

.2
(8

)
4

9
.5

(1
0

)
4

1
.1

(1
0

)
7

1
.6

(7
)

6
6

.3
(8

)
4

9
.3

(1
0

)

K
C

F
[2

2
]

1
0

.3
5

2
.0

4
1

.8
(1

2
)

5
0

.4
(9

)
6

4
.9

(9
)

4
8

.4
(1

1
)

5
4

.7
(1

0
)

6
5

.0
(9

)
4

6
.9

(1
2

)
4

0
.6

(1
1

)
6

7
.7

(9
)

6
4

.5
(1

0
)

4
7

.3
(1

1
)

R
G

B
O

F
[3

9
]

1
0

.3
5

3
.2

4
7

.1
(8

)
4

7
.0

(1
3

)
6

3
.6

(1
0

)
4

7
.4

(1
2

)
5

7
.5

(7
)

5
6

.7
(1

3
)

5
1

.8
(8

)
4

6
.9

(8
)

6
1

.9
(1

4
)

6
3

.4
(1

1
)

4
9

.3
(9

)

L
D

P
S

T
R

U
C

K
[2

]
1

0
.4

5
1

.8
4

6
.2

(9
)

5
9

.1
(7

)
5

4
.5

(1
4

)
5

1
.6

(1
0

)
5

2
.0

(1
1

)
5

6
.2

(1
4

)
5

0
.1

(9
)

3
9

.8
(1

2
)

6
8

.4
(8

)
5

6
.4

(1
2

)
5

0
.1

(8
)

P
C

d
et

[3
9

]
1

2
.2

4
8

.7
4

0
.6

(1
3

)
4

2
.1

(1
6

)
6

1
.7

(1
1

)
5

5
.4

(8
)

4
3

.6
(1

6
)

5
8

.5
(1

0
)

4
4

.8
(1

3
)

4
6

.3
(9

)
5

2
.0

(1
6

)
6

4
.9

(9
)

4
2

.6
(1

3
)

D
h

o
g

[3
9

]
1

2
.5

4
9

.0
4

3
.3

(1
1

)
4

8
.3

(1
2

)
5

5
.9

(1
2

)
4

7
.2

(1
3

)
5

0
.3

(1
2

)
5

2
.7

(1
5

)
4

7
.5

(1
1

)
3

8
.4

(1
3

)
6

3
.5

(1
1

)
5

4
.3

(1
6

)
4

6
.9

(1
2

)

S
tr

u
ck

[2
1

]
1

4
.2

4
4

.4
3

5
.4

(1
4

)
4

7
.0

(1
4

)
5

3
.4

(1
6

)
4

5
.0

(1
4

)
4

3
.9

(1
5

)
5

8
.0

(1
1

)
3

9
.0

(1
4

)
3

0
.4

(1
7

)
6

3
.5

(1
2

)
5

4
.4

(1
5

)
4

0
.6

(1
4

)

V
T

D
[2

8
]

1
4

.6
4

3
.0

3
0

.9
(1

8
)

4
8

.8
(1

1
)

5
3

.9
(1

5
)

3
8

.6
(1

7
)

4
6

.2
(1

3
)

5
7

.3
(1

2
)

3
7

.2
(1

5
)

2
8

.3
(1

8
)

6
3

.1
(1

3
)

5
4

.9
(1

4
)

3
8

.5
(1

5
)

R
G

B
[3

9
]

1
6

.4
3

9
.9

2
6

.7
(2

0
)

4
0

.9
(1

7
)

5
4

.7
(1

3
)

3
1

.9
(2

0
)

4
6

.0
(1

4
)

5
0

.5
(1

7
)

3
5

.7
(1

6
)

3
4

.8
(1

4
)

4
6

.8
(1

8
)

5
6

.2
(1

3
)

3
3

.7
(1

8
)

C
T

[4
6
]

1
7

.6
3

6
.4

3
1

.1
(1

7
)

4
6

.7
(1

5
)

3
6

.9
(2

0
)

3
9

.0
(1

6
)

3
4

.4
(1

9
)

4
8

.6
(1

8
)

3
1

.5
(1

8
)

2
3

.3
(2

1
)

5
4

.3
(1

5
)

4
2

.1
(1

8
)

3
4

.2
(1

7
)

P
C

fl
o

w
[3

9
]

1
7

.8
3

7
.1

3
5

.2
(1

5
)

2
9

.1
(2

1
)

4
3

.6
(1

8
)

4
2

.2
(1

5
)

3
3

.2
(2

0
)

4
7

.2
(1

9
)

3
3

.1
(1

7
)

3
2

.4
(1

6
)

4
3

.5
(1

9
)

4
1

.3
(2

0
)

3
5

.5
(1

6
)

T
L

D
[2

4
]

1
8

.1
3

5
.9

2
9

.0
(1

9
)

3
5

.1
(1

9
)

4
4

.4
(1

7
)

3
2

.5
(1

9
)

3
8

.5
(1

7
)

5
1

.6
(1

6
)

2
9

.7
(2

0
)

3
3

.8
(1

5
)

3
8

.7
(2

0
)

5
0

.2
(1

7
)

3
0

.5
(2

0
)

M
IL

[1
]

1
8

.5
3

5
.5

3
2

.2
(1

6
)

3
7

.2
(1

8
)

3
8

.3
(1

9
)

3
6

.6
(1

8
)

3
4

.6
(1

8
)

4
5

.5
(2

0
)

3
1

.5
(1

9
)

2
5

.6
(1

9
)

4
9

.0
(1

7
)

4
0

.4
(2

1
)

3
3

.6
(1

9
)

S
em

iB
[4

0
]

2
0

.6
2

8
.3

2
2

.5
(2

1
)

3
3

.0
(2

0
)

3
2

.7
(2

1
)

2
4

.0
(2

1
)

3
1

.6
(2

1
)

3
8

.2
(2

1
)

2
4

.4
(2

1
)

2
5

.1
(2

0
)

3
2

.7
(2

1
)

4
1

.9
(1

9
)

2
3

.2
(2

1
)

O
F

[3
9
]

2
2

.0
1

8
.6

1
7

.9
(2

2
)

1
1

.4
(2

2
)

2
3

.4
(2

2
)

2
0

.1
(2

2
)

1
7

.5
(2

2
)

1
8

.1
(2

2
)

1
8

.8
(2

2
)

1
5

.9
(2

2
)

2
2

.3
(2

2
)

2
3

.4
(2

2
)

1
6

.8
(2

2
)

J Real-Time Image Proc

123

planar rotation of a rigid object, non-planar rotation of a

rigid object and a person, and deformable object shrinking

or expanding (via a person performing simple squatting).

The left column of Fig. 14 shows the initial tracked objects

in a blue bounding box defining the target object. The

second column shows the tracker output during the shape

change where the red bounding box is DS-KCF with the

shape module switched off, and the blue bounding box is

the full DS-KCF. Clearly, the shape handling module

provides a more accurate result and a tighter fit on the

target object in all these scenarios. Table 6 provides the

AUC and P20 results for each of the five sequences. On

average, the aspect ratio shape analysis helps to achieve an

increase in accuracy of 16:9 and 13:2% for AUC and P20,

respectively.

5.5 Discussions

Our results demonstrate that the proposed approach

establishes the best trade-off between accuracy and pro-

cessing speed in comparison to other state-of-the-art RGB-

D trackers. A small reduction in tracker accuracy (&4% on

the AUC) is balanced by improvements in processing speed

of 180 times, giving real-time responses.

The results illustrate that DS-KCF’s accuracy can be

improved to manage object shape changes, without

dramatically compromising its processing rate. We

exploit fast depth-based segmentation to estimate object

shape variations without adding additional constraints

based on colour features. A trade-off remains between

the ability to handle shape variations and occlusion

detection. While the proposed extension improves

tracking with shape changes, results show increased drift

with occlusion.

Fig. 13 Difficult segmentation and tracking scenarios sequence

face_move1 (a) and sequence wuguiTwo_no (b). Red line DS-KCF,

blue line DS-KCFshape

Fig. 14 RotTrack shape change sequences and tracking output before

and after change of shape. Red bounding box DS-KCF, blue bounding

box DS-KCF w. shape

Table 6 Performance of the DS-KCF with and without the shape

handling module on the RotTrack sequences

Sequence Method AUC P20

boxRot DS-KCF 74.4 96.3

DS-KCF no shape 41.6 83.4

bookRot DS-KCF 72.3 96.9

DS-KCF no shape 54.6 100

humanRot DS-KCF 83.8 98.6

DS-KCF no shape 70.6 100

squatDown DS-KCF 83.1 96.2

DS-KCF no shape 73 46.7

squatUp DS-KCF 79.1 44.6

DS-KCF no shape 68.9 36.3

Average DS-KCF 78.6 86.5

DS-KCF no shape 61.7 73.3

All measures are in percentages

J Real-Time Image Proc

123

Finally, it has to be underlined that depth data represent

the key to the system’s efficiency. It allows us to precisely

estimate scale changes at minimal computational cost (see

Table 3) and facilitates object segmentation so that its

shape may be estimated. However, depth-only segmenta-

tion could be a potential drawback of the presented

approach as segmentation errors, due to for example noisy

depth data or the target interacting with other objects, may

cause drifts or enlargement of the tracked object to include

neighbouring areas in the environment. As previously

discussed, the proposed segmentation and shape estimation

module has been formulated so that a very high processing

rate may be retained.

6 Conclusions

We presented DS-KCF, a real-time RGB-D tracker, which

detects and handles scale changes, manages occlusions,

and can deal with shape changes—all facilitated by a fast

depth segmentation stage. We analysed a number of dif-

ferent feature combinations and selected a concatenation of

HoG and depth features as the best feature set to analyse

further. The processing load of the various stages of the

proposed method was considered, and the processing rate

of the overall method based on its MATLAB and C??

implementations was measured. A full comparison against

19 other object trackers was also presented. DS-KCF per-

forms tracking in real time, processing on average 35.7 fps

in MATLAB, and 187 fps in C?? (no-shape handling)

when benchmarked on 100 RGB-D sequences in the

Princeton dataset [39].

Acknowledgements This work was performed in the SPHERE IRC

project funded by the UK Engineering and Physical Sciences

Research Council (EPSRC), Grant EP/K031910/1. The study used the

Princeton RGB-D data available from http://tracking.cs.princeton.

edu. The RotTrack RGB-D data created in-house and the C?? and

MATLAB code of the proposed DS-KCF algorithm are available

from the SPHERE website at http://www.ircsphere.ac.uk/work-pack

age-2/DS-KCF-JRTIP.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Avidan, S.: Support vector tracking. IEEE Trans. Pattern Anal.

Mach. Intell. 26(8), 1064–1072 (2004)

2. Awwad, S., Hussein, F., Piccardi, M.: Local depth patterns for

tracking in depth videos. In: ACM Multimedia, pp. 1115–1118

(2015)

3. Bolme, D., Beveridge, J., Draper, B., Lui, Y.M.: Visual object

tracking using adaptive correlation filters. In: IEEE CVPR,

pp. 2544–2550 (2010)

4. Brox, T., Malik, J.: Large displacement optical flow: descriptor

matching in variational motion estimation. IEEE Trans. Pattern

Anal. Mach. Intell. 33(3), 500–513 (2011)

5. Camplani, M., Mantecon, T., Salgado, L.: Depth-color fusion

strategy for 3-D scene modeling with kinect. IEEE Trans.

Cybern. 43(6), 1560–1571 (2013)

6. Camplani, M., Hannuna, S., Mirmehdi, M., Damen, D., Paiement,

A., Tao, L., Burghardt, T.: Real-time RGB-D tracking with depth

scaling kernelised correlation filters and occlusion handling. In:

BMVC, pp. 145.1–145.11 (2015)

7. Camplani, M., Paiement, A., Mirmehdi, M., Damen, D., Han-

nuna, S., Tao, L., Burghardt, T.: Multiple human tracking from

RGB-D data: a survey. IET Comput. Vis. (2017) (to appear)

8. Chen, T., Chen, Y., Chien, S.: Fast image segmentation based on

K-means clustering with histograms in HSV colour space. In:

IEEE MSP workshop, pp. 322–325 (2008)

9. Chen, Z., Hong, Z., Tao, D.: An experimental survey on corre-

lation filter-based tracking. CoRR abs/1509.05520, http://arxiv.

org/abs/1509.05520 (2015)

10. Chrapek, D., Beran, V., Zemcik, P.: Depth-based filtration for

tracking boost. ACIVS 9386, 217–228 (2015)

11. Danelljan, M., Häger, G., Shahbaz Khan, F., Felsberg, M.:

Accurate scale estimation for robust visual tracking. In: BMVC,

pp. 38.1–38.11 (2014a)

12. Danelljan, M., Khan, F., Felsberg, M., van de Weijer, J.: Adap-

tive color attributes for real-time visual tracking. In: IEEE CVPR,

pp. 1090–1097 (2014b)

13. Du, Q., Cai, Z.q., Liu, H., Yu, Z.L.: A rotation adaptive corre-

lation filter for robust tracking. In: IEEE DSP, pp. 1035–1038

(2015)

14. Galoogahi, H., Sim, T., Lucey, S.: Multi-channel correlation fil-

ters. In: IEEE ICCV, pp. 3072–3079 (2013)

15. Garcı́a, G., Klein, D., Stückler, J., Frintrop, S., Cremers, A.:

Adaptive multi-cue 3D tracking of arbitrary objects. In: Pattern

Recognition, pp. 357–366 (2012)

16. Gonzalez, R., Woods, R.: Digital Image Processing. Addison-

Wesley Longman Publishing Co. Inc, Reading (1992)

17. Gupta, S., Arbelaez, P., Malik, J.: Perceptual organization and

recognition of indoor scenes from RGB-D images. In: IEEE

CVPR, pp. 564–571 (2013)

18. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich

features from RGB-D images for object detection and segmen-

tation. ECCV 8695, 345–360 (2014)

19. Haag, K.: KCF implementation C??. GitHub repository. https://

github.com/klahaag/cf_tracking (2015)

20. Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision

with microsoft kinect sensor: a review. IEEE T-Cybern. 43(5),

1318–1334 (2013)

21. Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking

with kernels. In: IEEE ICCV, pp. 263–270 (2011)

22. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed

tracking with Kernelized correlation filters. IEEE Trans. Pattern

Anal. Mach. Intell. 37(3), 583–596 (2015)

23. Hester, C.F., Casasent, D.: Multivariant technique for multiclass

pattern recognition. Appl. Opt. 19, 1758–1761 (1980)

24. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detec-

tion. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422

(2012)

J Real-Time Image Proc

123

http://tracking.cs.princeton.edu
http://tracking.cs.princeton.edu
http://www.ircsphere.ac.uk/work-package-2/DS-KCF-JRTIP
http://www.ircsphere.ac.uk/work-package-2/DS-KCF-JRTIP
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1509.05520
http://arxiv.org/abs/1509.05520
https://github.com/klahaag/cf%5ftracking
https://github.com/klahaag/cf%5ftracking

25. Khoshelham, K., Elberink, S.: Accuracy and resolution of kinect

depth data for indoor mapping applications. Sensors 12(2),

1437–1454 (2012)

26. Klein, D., Cremers, A.: Boosting scalable gradient features for

adaptive real-time tracking. In: IEEE ICRA, pp. 4411–4416 (2011)

27. Kristan, M., et al.: The Visual Object Tracking VOT2014 chal-

lenge results. In: ECCV Visual Object Tracking Challenge

Workshop (2014)

28. Kwon, J., Lee, K.: Visual tracking decomposition. In: IEEE

CVPR, pp. 1269–1276 (2010)

29. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.:

MOTChallenge 2015: towards a benchmark for multi-target

tracking. arXiv:150401942 [cs] (2015)

30. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.: A

survey of appearance models in visual object tracking. ACM

Trans. Intell. Syst. Technol. 4(4), 271–288 (2013)

31. Li, Y., Zhu, J.: A scale adaptive Kernel correlation filter tracker

with feature integration. ECCV Workshops, vol. 8926,

pp. 254–265 (2015)

32. Li, Y., Zhu, J., Hoi, S.C.: Reliable patch trackers: Robust visual

tracking by exploiting reliable patches. In: IEEE CVPR,

pp. 353–361 (2015)

33. Liu, T., Wang, G., Yang, Q.: Real-time part-based visual tracking via

adaptive correlation filters. In: IEEE CVPR, pp. 4902–4912 (2015)

34. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf.

Theory 28(2), 129–137 (1982)

35. Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation

tracking. In: IEEE CVPR, pp. 5388–5396 (2015)

36. Meshgi, K., ichi Maeda, S., Oba, S., Skibbe, H., zhe Li, Y., Ishii,

S.: An occlusion-aware particle filter tracker to handle complex

and persistent occlusions. Comput. Vis. Image Underst. 150,

81–94 (2016)

37. Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press,

Cambridge (2001)

38. Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan,

A., Shah, M.: Visual tracking: an experimental survey. IEEE

Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)

39. Song, S., Xiao, J.: Tracking revisited using RGB-D camera: unified

benchmark and baselines. In: IEEE ICCV, pp. 233–240 (2013)

40. Stalder, S., Grabner, H., Van Gool, L.: Beyond semi-supervised

tracking: tracking should be as simple as detection, but not

simpler than recognition. In: IEEE ICCV Workshops,

pp. 1409–1416 (2009)

41. Wang, Q., Fang, J., Yuan, Y.: Multi-cue based tracking. Neuro-

computing 131, 227–236 (2014)

42. Weikersdorfer, D., Gossow, D., Beetz, M.: Depth-adaptive

superpixels. In: ICPR, pp. 2087–2090 (2012)

43. Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark.

In: IEEE CVPR, pp. 2411–2418 (2013)

44. Xu, G., Xu, X., Xing, X., Cai, B., Qing, C.: Multi-invariance

appearance model for object tracking. In: IEEE DSP,

pp. 347–351 (2015)

45. Xu, Y., Wang, J., Li, H., Li, Y., Miao, Z., Zhang, Y.: Patch-based

scale calculation for real-time visual tracking. IEEE Signal Pro-

cess. Lett. 23(1), 40–44 (2016)

46. Zhang, K., Zhang, L., Yang, M.H.: Real-time compressive

tracking. In: ECCV, pp. 864–877 (2012)

47. Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.H.: Fast visual

tracking via dense spatio-temporal context learning. In: ECCV,

pp. 127–141 (2014)

48. Zhu, G., Wang, J., Wu, Y., Lu, H.: Collaborative correlation

tracking. In: BMVC, pp. 184.1–184.12 (2015)

Sion Hannuna received his Ph.D. in computer vision from the

University of Bristol in 2007. His Ph.D. focused on automatically

detecting ambulatory quadrupeds in low-quality wildlife videos. He

has also developed software to power a cognitive aid system for blind

people (CASBliP project). His research is currently focussed on

quality of movement assessment and tracking.

Massimo Camplani is a research associate on the SPHERE project at

the University of Bristol. His research interests include areas in

computer vision. Camplani received Ph.D. in electronic and computer

engineering from the Università degli Studi di Cagliari.

Jake Hall is an undergraduate in the Department of Computer

Science at the University of Bristol, UK. His interests include

computer vision, software development, object-oriented design, and

functional programming.

Majid Mirmehdi (MM) is a Professor of Computer Vision in the

Department of Computer Science at the University of Bristol and

member of the Bristol Robotics Laboratory and the Bristol Vision

Institute (BVI). He is the Graduate Dean and Faculty Graduate

Education Director in the Faculty of Engineering at Bristol. His

research interests include natural scene analysis and health care

monitoring using vision and other sensors, and he has more than 200

refereed conference and journal publications in these and other areas.

MM is a Fellow of the International Association for Pattern

Recognition. He is Editor-in-Chief of IET Computer Vision journal

and an Associate Editor of the Pattern Analysis and Applications

journal. He is a member of the IET, Senior Member of IEEE, and

serves on the Executive Committee of the British Machine Vision

Association as well as the IET Vision and Imaging Network.

Dima Damen is a Lecturer in Computer Vision at the Department of

Computer Science, University of Bristol, UK. She received the B.Sc.

degree (’02) in computer science from Birzeit University, the M.Sc.

degree (’03) in distributed multimedia systems, and the Ph.D. (’09)

degree in computer vision from the University of Leeds, UK. Her

current research interests include event, action, and activity analysis

and recognition, shape-based object detection, and egocentric vision.

Dima is an Associate Editor of IET Computer Vision (2013), co-

chaired BMVC13, an area chair for BMVC (2014–2016). She is a

member of IEEE and BMVA.

Tilo Burghardt Tilo Burghardt0s research focus is applied computer

vision. He graduated with Distinction in Media Computing at Dresden

University of Technology (Germany) and subsequently completed his

postgraduate studies at the University of Bristol (UK). He is currently

a Lecturer at the Department of Computer Science there. He is a

member of the British Machine Vision Association (BMVA) and the

German Academic Foundation (Studienstiftung des Deutschen

Volkes).

Adeline Paiement is a Research Associate in Computer Vision in the

Computer Science Department at the University of Bristol. She

received a Ph.D. in computer vision from the same university in 2014

for her work on 3D/4D object reconstruction from sparse and

misaligned medical images. She is currently working with the

SPHERE Project on movement and activity analysis for health

monitoring in a home environment.

Lili Tao is a Research Associate at the Visual Information Laboratory

at the University of Bristol. Her research interests include human

motion analysis, 3D deformable object reconstruction, and facial

expression analysis. Tao received a Ph.D. in computer vision from the

University of Central Lancashire.

J Real-Time Image Proc

123

http://arxiv.org/abs/150401942

	DS-KCF: a real-time tracker for RGB-D data
	Abstract
	Introduction
	Past contributions in RGB-D tracking
	The KCF tracker and its extensions
	Proposed DS-KCF tracker
	Fast depth segmentation
	Detecting and handling scale changes
	Detecting and handling occlusions
	Detecting and handling shape changes

	Experimental results
	Feature analysis
	Real-time performance and implementation details
	Results with Princeton dataset
	More on shape handling
	Discussions

	Conclusions
	Acknowledgements
	References

