123 research outputs found

    A Study of Personnel Practices Related to Teacher Aide Programs

    Get PDF
    A growing number of school districts have used teacher aides or paraprofessionals. State Boards of Education have voiced concern that directors and administrators develop and follow sound personnel policies in the hiring of teacher aides. It was the purpose of this study to propose guidelines for (1) selection of teacher aides, (2) training of teacher aides, (3) supervision of teacher aides, and (4) evaluation of teacher aides. The increasing use of teacher aides has focused attention on a need for an organized program related to the problem. This study investigated programs which proposed guidelines administrators and teachers could use in the selection, training, supervision, and evaluation of teacher aides

    Complexity of the Inoculum Determines the Rate of Reversion of SIV Gag CD8 T Cell Mutant Virus and Outcome of Infection

    Get PDF
    Escape mutant (EM) virus that evades CD8+ T cell recognition is frequently observed following infection with HIV-1 or SIV. This EM virus is often less replicatively “fit” compared to wild-type (WT) virus, as demonstrated by reversion to WT upon transmission of HIV to a naïve host and the association of EM virus with lower viral load in vivo in HIV-1 infection. The rate and timing of reversion is, however, highly variable. We quantified reversion to WT of a series of SIV and SHIV viruses containing minor amounts of WT virus in pigtail macaques using a sensitive PCR assay. Infection with mixes of EM and WT virus containing ≥10% WT virus results in immediate and rapid outgrowth of WT virus at SIV Gag CD8 T cell epitopes within 7 days of infection of pigtail macaques with SHIV or SIV. In contrast, infection with biologically passaged SHIVmn229 viruses with much smaller proportions of WT sequence, or a molecular clone of pure EM SIVmac239, demonstrated a delayed or slow pattern of reversion. WT virus was not detectable until ≥8 days after inoculation and took ≥8 weeks to become the dominant quasispecies. A delayed pattern of reversion was associated with significantly lower viral loads. The diversity of the infecting inoculum determines the timing of reversion to WT virus, which in turn predicts the outcome of infection. The delay in reversion of fitness-reducing CD8 T cell escape mutations in some scenarios suggests opportunities to reduce the pathogenicity of HIV during very early infection

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds

    Get PDF
    The relationships of passerines (such as the well-studied zebra finch) with non-passerine birds is one of the great enigmas of avian phylogenetic research, because decades of extensive morphological and molecular studies yielded highly inconsistent results between and within data sets. Here we show the first application of the virtually homoplasy-free retroposon insertions to this controversy. Our study examined ~200,000 retroposon-containing loci from various avian genomes and retrieved 51 markers resolving early bird phylogeny. Among these, we obtained statistically significant evidence that parrots are the closest and falcons the second-closest relatives of passerines, together constituting the Psittacopasserae and the Eufalconimorphae, respectively. Our new and robust phylogenetic framework has substantial implications for the interpretation of various conclusions drawn from passerines as model organisms. This includes insights of relevance to human neuroscience, as vocal learning (that is, birdsong) probably evolved in the psittacopasseran ancestor, >30 million years earlier than previously assumed

    Designing Bioactive Delivery Systems for Tissue Regeneration

    Get PDF
    The direct infusion of macromolecules into defect sites generally does not impart adequate physiological responses. Without the protection of delivery systems, inductive molecules may likely redistribute away from their desired locale and are vulnerable to degradation. In order to achieve efficacy, large doses supplied at interval time periods are necessary, often at great expense and ensuing detrimental side effects. The selection of a delivery system plays an important role in the rate of re-growth and functionality of regenerating tissue: not only do the release kinetics of inductive molecules and their consequent bioactivities need to be considered, but also how the delivery system interacts and integrates with its surrounding host environment. In the current review, we describe the means of release of macromolecules from hydrogels, polymeric microspheres, and porous scaffolds along with the selection and utilization of bioactive delivery systems in a variety of tissue-engineering strategies

    Mechanisms of metastasis

    Get PDF
    Metastasis is an enormously complex process that remains to be a major problem in the management of cancer. The fact that cancer patients might develop metastasis after years or even decades from diagnosis of the primary tumor makes the metastatic process even more complex. Over the years many hypotheses were developed to try to explain the inefficiency of the metastatic process, but none of these theories completely explains the current biological and clinical observations. In this review we summarize some of the proposed models that were developed in attempt to understand the mechanisms of tumor dissemination and colonization as well as metastatic progression

    GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    Get PDF
    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10: 11: 58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2(-6.0)(+8.4)M-circle dot and 19.4(-5.9)(+5.3)M(circle dot) (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, chi(eff) = -0.12(-0.30)(+0.21) . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880(-390)(+450) Mpc corresponding to a redshift of z = 0.18(-0.07)(+0.08) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m(g) <= 7.7 x 10(-23) eV/c(2). In all cases, we find that GW170104 is consistent with general relativity

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore