32 research outputs found

    Clinical Comparison of QUANTA Flash dsDNA Chemiluminescent Immunoassay with Four Current Assays for the Detection of Anti-dsDNA Autoantibodies

    Get PDF
    Introduction. The objective of the present study was to compare QUANTA Flash dsDNA, a chemiluminescent immunoassay (CIA) on the BIO-FLASH, a rapid-response chemiluminescent analyzer, to three other anti-dsDNA antibody assays and to Crithidia luciliae indirect immunofluorescence test (CLIFT). Methods. In the first part of the study, 161 samples, 61 from patients suffering from systemic lupus erythematosus (SLE) and 100 from a disease control group, were tested by QUANTA Flash dsDNA CIA, QUANTA Lite dsDNA SC ELISA, BioPlex 2200 multiplex flow immunoassay (MFI), ImmuLisa dsDNA ELISA, and NOVA Lite CLIFT. A second cohort of 69 SLE patients was then tested by QUANTA Flash dsDNA and CLIFT to expand the study. Results. The overall qualitative agreements varied between 77.0% (NOVA Lite CLIFT versus QUANTA Lite) and 89.4% (ImmuLisa versus NOVA Lite CLIFT). The clinical sensitivities for the anti-dsDNA antibody tests varied from 8.2% (NOVA Lite CLIFT) to 54.1% (QUANTA Lite), while the clinical specificities varied from 88.0% (BioPlex 2200) to 100.0% (NOVA Lite CLIFT). Good correlation was found between QUANTA Flash dsDNA and NOVA Lite CLIFT. Conclusion. Significant variations among dsDNA methods were observed. QUANTA Flash dsDNA provides a good combination of sensitivity and specificity for the diagnosis of SLE and good agreement to CLIFT

    Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review

    Get PDF
    Transcranial magnetic stimulation (TMS) was introduced as a non-invasive tool for the investigation of the motor cortex. The repetitive application (rTMS), causing longer lasting effects, was used to study the influence on a variety of cerebral functions. High-frequency (>1 Hz) rTMS is known to depolarize neurons under the stimulating coil and to indirectly affect areas being connected and related to emotion and behavior. Researchers found selective cognitive improvement after high-frequency (HF) stimulation specifically over the left dorsolateral prefrontal cortex (DLPFC). This article provides a systematic review of HF-rTMS studies (1999–2009) stimulating over the prefrontal cortex of patients suffering from psychiatric/neurological diseases or healthy volunteers, where the effects on cognitive functions were measured. The cognitive effect was analyzed with regard to the impact of clinical status (patients/healthy volunteers) and stimulation type (verum/sham). RTMS at 10, 15 or 20 Hz, applied over the left DLPFC, within a range of 10–15 successive sessions and an individual motor threshold of 80–110%, is most likely to cause significant cognitive improvement. In comparison, patients tend to reach a greater improvement than healthy participants. Limitations concern the absence of healthy groups in clinical studies and partly the absence of sham groups. Thus, future investigations are needed to assess cognitive rTMS effects in different psychiatric disorders versus healthy subjects using an extended standardized neuropsychological test battery. Since the pathophysiological and neurobiological basis of cognitive improvement with rTMS remains unclear, additional studies including genetics, experimental neurophysiology and functional brain imaging are necessary to explore stimulation-related functional changes in the brain

    Benchmarking whole exome sequencing in the German Network for Personalized Medicine

    Get PDF
    Introduction Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of complex biomarkers in a single analysis. Methods To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four commercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Germany, each employing local wet-lab and bioinformatics investigating somatic and germline variants, copy-number alteration (CNA), and different complex biomarkers. Somatic variant calling was performed in 494 diagnostically relevant cancer genes. In addition, all raw data were re-analyzed with a central bioinformatic pipeline to separate wet- and dry-lab variability. Results The mean positive percentage agreement (PPA) of somatic variant calling was 76% and positive predictive value (PPV) 89% compared a consensus list of variants found by at least five centers. Variant filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis increased the PPA to 88% for all and 97% for clinically relevant variants. CNA calls were concordant for 82% of genomic regions. Calls of homologous recombination deficiency (HRD), tumor mutational burden (TMB), and microsatellite instability (MSI) status were concordant for 94%, 93%, and 93% respectively. Variability of CNAs and complex biomarkers did not increase considerably using the central pipeline and was hence attributed to wet-lab differences. Conclusion Continuous optimization of bioinformatic workflows and participating in round robin tests are recommend

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore