124 research outputs found

    Transport behavior of holes in boron delta-doped diamond structures

    Get PDF
    Boron delta-doped diamond structures have been synthesized using microwave plasma chemical vapor deposition and fabricated into FET and gated Hall bar devices for assessment of the electrical characteristics. A detailed study of variable temperature Hall, conductivity, and field-effect mobility measurements was completed. This was supported by Schr€dinger-Poisson and relaxation time o calculations based upon application of Fermi’s golden rule. A two carrier-type model was developed with an activation energy of 0.2eVbetweenthedeltalayerlowestsubbandwithmobility0.2 eV between the delta layer lowest subband with mobility 1 cm2/Vs and the bulk valence band with high mobility. This new understanding of the transport of holes in such boron delta-doped structures has shown that although Hall mobility as high as 900 cm2/Vs was measured at room temperature, this dramatically overstates the actual useful performance of the device

    Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations

    Get PDF
    Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations

    Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences

    Get PDF
    The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection

    Chemical transport models often underestimate aerosol acidity in remote regions of the atmosphere

    Get PDF
    The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R2 \u3c 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%

    Suppression of p75 Neurotrophin Receptor Surface Expression with Intrabodies Influences Bcl-xL mRNA Expression and Neurite Outgrowth in PC12 Cells

    Get PDF
    Background: Although p75 neurotrophin receptor (p75NTR) is the first neurotrophin receptor isolated, its diverse physiological functions and signaling have remained elusive for many years. Loss-of-function phenotypic analyses for p75NTR were mainly focused at the genetic level; however these approaches were impacted by off-target effect, insufficient stability, unspecific stress response or alternative active splicing products. In this study, p75NTR surface expression was suppressed for the first time at the protein level by endoplasmic reticulum (ER) retained intrabodies. Results: Three monoclonal recombinant antibody fragments (scFv) with affinities in the low nanomolar range to murine p75NTR were isolated by antibody phage display. To suppress p75NTR cell surface expression, the encoding genes of these scFvs extended by the ER retention peptide KDEL were transiently transfected into the neuron-like rat pheochromocytoma cell line PC12 and the mouse neuroblastoma x mouse spinal cord hybrid cell line NSC19. The ER retained intrabody construct, SH325-G7-KDEL, mediated a downregulation of p75NTR cell surface expression as shown by flow cytometry. This effect was maintained over a period of at least eight days without activating an unfolded protein response (UPR). Moreover, the ER retention of p75NTR resulted in downregulation of mRNA levels of the anti-apoptotic protein Bcl-xL as well as in strong inhibition of NGF-induced neurite outgrowth in PC12 cells. Conclusion: The ER retained intrabody SH325-G7-KDEL not only induces phenotypic knockdown of this p75NTR but als

    Control of Stochastic Gene Expression by Host Factors at the HIV Promoter

    Get PDF
    The HIV promoter within the viral long terminal repeat (LTR) orchestrates many aspects of the viral life cycle, from the dynamics of viral gene expression and replication to the establishment of a latent state. In particular, after viral integration into the host genome, stochastic fluctuations in viral gene expression amplified by the Tat positive feedback loop can contribute to the formation of either a productive, transactivated state or an inactive state. In a significant fraction of cells harboring an integrated copy of the HIV-1 model provirus (LTR-GFP-IRES-Tat), this bimodal gene expression profile is dynamic, as cells spontaneously and continuously flip between active (Bright) and inactive (Off) expression modes. Furthermore, these switching dynamics may contribute to the establishment and maintenance of proviral latency, because after viral integration long delays in gene expression can occur before viral transactivation. The HIV-1 promoter contains cis-acting Sp1 and NF-κB elements that regulate gene expression via the recruitment of both activating and repressing complexes. We hypothesized that interplay in the recruitment of such positive and negative factors could modulate the stability of the Bright and Off modes and thereby alter the sensitivity of viral gene expression to stochastic fluctuations in the Tat feedback loop. Using model lentivirus variants with mutations introduced in the Sp1 and NF-κB elements, we employed flow cytometry, mRNA quantification, pharmacological perturbations, and chromatin immunoprecipitation to reveal significant functional differences in contributions of each site to viral gene regulation. Specifically, the Sp1 sites apparently stabilize both the Bright and the Off states, such that their mutation promotes noisy gene expression and reduction in the regulation of histone acetylation and deacetylation. Furthermore, the NF-κB sites exhibit distinct properties, with κB site I serving a stronger activating role than κB site II. Moreover, Sp1 site III plays a particularly important role in the recruitment of both p300 and RelA to the promoter. Finally, analysis of 362 clonal cell populations infected with the viral variants revealed that mutations in any of the Sp1 sites yield a 6-fold higher frequency of clonal bifurcation compared to that of the wild-type promoter. Thus, each Sp1 and NF-κB site differentially contributes to the regulation of viral gene expression, and Sp1 sites functionally “dampen” transcriptional noise and thereby modulate the frequency and maintenance of this model of viral latency. These results may have biomedical implications for the treatment of HIV latency

    Understanding renal posttransplantation anemia in the pediatric population

    Get PDF
    Advances in renal transplantation management have proven to be beneficial in improving graft and patient survival. One of the properties of a well-functioning renal allograft is the secretion of adequate amounts of the hormone erythropoietin to stimulate erythropoiesis. Posttransplantation anemia (PTA) may occur at any point in time following transplantation, and the cause is multifactoral. Much of our understanding of PTA is based on studies of adult transplant recipients. The limited number of studies that have been reported on pediatric renal transplant patients appear to indicate that PTA is prevalent in this patient population. Erythropoietin deficiency or resistance is commonly associated with iron deficiency. An understanding of the risk factors, pathophysiology and management of PTA in the pediatric renal transplant population may provide guidelines for clinicians and researchers in the pursuit of larger prospective randomized control studies aimed at improving our limited knowledge of PTA. Recognition of PTA through regular screening and evaluation of the multiple factors that may contribute to its development are recommended after transplantation

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    corecore