11 research outputs found

    Comparative assessment of physiological and biochemical changes in the selected plant species growing under hydrocarbon stress

    Get PDF
    Hydrocarbons have become a serious environmental problem due to industrialization and extensive use of vehicles. Various plant species shows a range of stress responses and adaptations to survive in hydrocarbon stress. This study was conducted to investigate the comparative phytotoxicity of polycyclic aromatic hydrocarbons (PAHs) on plants growing under hydrocarbon stress on the germination and to evaluate the response on seedling growth. For the study, two crop plant species (Brassica juncea L. Czern., and Triticum aestivum L.) and two ornamental plant species (Tagetes erecta L. and Helianthus annuus L.) were taken. Pot experiments were conducted in triplicates of 10 days old seedlings treated with 5, 20, 50 & 100 mg kg-1 concentrations of hydrocarbons. After 20 days, biochemical analysis and antioxidant enzyme activity of these plants were studied. Polyphenol and proline increased with increasing concentration of hydrocarbons which were maximum in H. annuus with 0.909 mg g-1 polyphenol and 0.732 µmol g-1 proline at 100 mg kg-1. Increase in antioxidant enzymatic activities was observed with increasing concentration. H. annuus showed maximum activity at 100 ppm which was ascorbate peroxidase (20.37 Unit g-1 FW), peroxidase (0.212 Unit g-1 FW) and superoxide dismutase (2.13 Unit g-1 FW). HPLC analysis in plants and soil provided the concentration of hydrocarbons present in plants species after 20 days taken up from the treated soil. Plants cultivated in 100 mg kg-1 concentration were analysed and the lowest toxicity observed in H. annuus which was 3.013 mg kg-1 Naphthalene, 7.750 mg kg-1 Phenanthrene and 5.691 mg kg-1 Anthracene while highest toxicity was observed in Tagetes at 8.476 mg kg-1 Naphthalene, 0.398 mg kg-1 Phenanthrene and 0.416 mg kg-1 Anthracene. These results suggested that H. annuus can be adopted in phytoremediation of hydrocarbons soil

    Design and Analysis of Decagonal Photonic Crystal Fiber with Elliptical air hole core for liquid sensing

    Get PDF
    In this paper, a decagonal geometry has been designed for liquid sensing. The liquid analytes that are sensed are ethanol, benzene and water as they are the most used analytes in the chemical and biological industries. Firstly, a simple decagonal structure is designed and  and sensitivity of this structure is calculated. Then, the core structure is modified and decagonal, octagonal and hexagonal geometries are constructed inside the core with circular holes. Lastly, these circular holes are replaced by elliptical holes. All the designed layouts are analysed and compared. The sensitivity obtained is of the order 40-50 % and confinement loss of order which shows that these structures can be used for sensing ethanol, water and benzene and are reliable. For benzene, water and ethanol, the decagonal structure with core comprised of decagonal geometry, made up of elliptical holes (x as major axis), gives the best results. For this geometry, the values are 1.379, 1.317 and 1.313 for benzene, ethanol and water respectively. The sensitivity values obtained are 51.94%, 46.95%, and 44.45% and confinement loss value is , and  respectively

    Design and analysis of decagonal photonic crystal fiber with elliptical air hole core for liquid sensing

    Get PDF
    465-470In this paper, a decagonal geometry has been designed for liquid sensing. The liquid analytes that are sensed are ethanol, benzene and water as they are the most used analytes in the chemical and biological industries. Firstly, a decagonal structure has been designed and neff and sensitivity of this structure has been calculated. Then, the core structure has been modified and decagonal, octagonal and hexagonal geometries have been constructed inside the core with circular holes. Lastly, these circular holes have been replaced by elliptical holes. All the designed layouts have been analyzed and compared. The sensitivity obtained is of the order 40-50 % and confinement loss of order 10-9 dB/m which shows that these structures can be used for sensing ethanol, water and benzene and are reliable. For benzene, water and ethanol, the decagonal structure with core comprised of decagonal geometry, has been made of elliptical holes (x as major axis), gives the best results. For this geometry, the neff values are 1.379, 1.317 and 1.313 for benzene, ethanol and water, respectively. The sensitivity values obtained are 51.94%, 46.95%, and 44.45% and confinement loss value is 8.19 x 10-10, 1.03 x 10-10 and 1.069 x 10-7 dB/m, respectively

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Multidrug Transporters CaCdr1p and CaMdr1p of Candida albicans Display Different Lipid Specificities: both Ergosterol and Sphingolipids Are Essential for Targeting of CaCdr1p to Membrane Rafts▿

    Get PDF
    In this study, we compared the effects of altered membrane lipid composition on the localization of two membrane drug transporters from different superfamilies of the pathogenic yeast Candida albicans. We demonstrated that in comparison to the major facilitator superfamily multidrug transporter CaMdr1p, ATP-binding cassette transporter CaCdr1p of C. albicans is preferentially localized within detergent-resistant membrane (DRM) microdomains called ‘rafts.’ Both CaCdr1p and CaMdr1p were overexpressed as green fluorescent protein (GFP)-tagged proteins in a heterologous host Saccharomyces cerevisiae, wherein either sphingolipid (Δsur4 or Δfen1 or Δipt1) or ergosterol (Δerg24 or Δerg6 or Δerg4) biosynthesis was compromised. CaCdr1p-GFP, when expressed in the above mutant backgrounds, was not correctly targeted to plasma membranes (PM), which also resulted in severely impaired drug resistance. In contrast, CaMdr1p-GFP displayed no sorting defect in the mutant background and remained properly surface localized and displayed no change in drug resistance. Our data clearly show that CaCdr1p is selectively recruited, over CaMdr1p, to the DRM microdomains of the yeast PM and that any imbalance in the raft lipid constituents results in missorting of CaCdr1p

    Membrane homoeostasis and multidrug resistance in yeast

    No full text
    The development of MDR (multidrug resistance) in yeast is due to a number of mechanisms. The most documented mechanism is enhanced extrusion of drugs mediated by efflux pump proteins belonging to either the ABC (ATP-binding cassette) superfamily or MFS (major facilitator superfamily). These drug-efflux pump proteins are localized on the plasma membrane, and the milieu therein affects their proper functioning. Several recent studies demonstrate that fluctuations in membrane lipid composition affect the localization and proper functioning of the MDR efflux pump proteins. Interestingly, the efflux pumps of the ABC superfamily are particularly susceptible to imbalances in membrane-raft lipid constituents. This review focuses on the importance of the membrane environment in functioning of the drug-efflux pumps and explores a correlation between MDR and membrane lipid homoeostasis

    Spectroscopy evidence of interaction of 1,5 disubstituted piperidino-amido anthraquinone derivative with human telomeric G-quadruplex DNA: Basis of anticancer action

    No full text
    The binding of ligands to G-quadruplex (G4) structures at the ends of human telomeric DNA induces thermal stabilization, which interferes with telomere maintenance by disrupting the association of telomeres with the telomerase enzyme—an important marker for cancer. Understanding the binding mode of the ligand-G quadruplex DNA complex is imperative for evaluating the relative efficacy and specificity of their interaction. We focused on the interaction of 1,5-Bis(3-piperidino propionamido) anthracene-9,10-dione with human telomeric DNA sequences using surface plasmon resonance, absorbance, fluorescence (steady-state and lifetime), and circular dichroism spectroscopy techniques. The ligand binding with HTel22 (Kb = 8.4 × 105 M−1) induced cell toxicity with an IC50 value of ∼ 8.64 µM in MCF-7 cancer cell lines. Significant hypochromism (59 %), fluorescence quenching (97 %), no change in fluorescence lifetime and absence of induced Circular Dichroism (CD) band upon addition of G4 DNA to ligand, suggest a groove/external binding mode. CD spectral changes reflect rearrangement in parallel and antiparallel strands to accommodate the ligand. Docking results reveal specific short contacts of the ligand's side chain, including 9CO, 13N, 14NH, and 11CO, with the grooves of the G4 DNA, without making any contact with the loops, favoring an energetically more favorable conformation. Thermal denaturation profiles, obtained by Differential Scanning Calorimetry and CD, show the stabilization of wHTel26 and HTel22 G4 DNA in K+ and Na+ rich solutions by 21.2 and 17.6 °C, respectively, which may restrict the access of telomerase to telomeres. The findings indicate the potential of modifying anthraquinone substituent groups for therapeutic applications

    Proceedings of International Conference on Women Researchers in Electronics and Computing

    No full text
    This proceeding contains articles on the various research ideas of the academic community and practitioners presented at the international conference, “Women Researchers in Electronics and Computing” (WREC’2021). WREC'21 was organized in online mode by Dr. B R Ambedkar National Institute of Technology, Jalandhar (Punjab), INDIA during 22 – 24 April 2021. This conference was conceptualized with an objective to encourage and motivate women engineers and scientists to excel in science and technology and to be the role models for young girls to follow in their footsteps. With a view to inspire women engineers, pioneer and successful women achievers in the domains of VLSI design, wireless sensor networks, communication, image/ signal processing, machine learning, and emerging technologies were identified from across the globe and invited to present their work and address the participants in this women oriented conference. Conference Title: International Conference on Women Researchers in Electronics and ComputingConference Acronym: WREC'21Conference Date: 22–24 April 2021Conference Location: Online (Virtual Mode)Conference Organizers: Department of Electronics and Communication Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, INDI

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    corecore