283 research outputs found

    Circulating microRNAs: next-generation biomarkers for early lung cancer detection

    Get PDF
    Early diagnosis of lung cancer by low-dose computed tomography is an effective strategy to reduce cancer mortality in high-risk individuals. However, recruitment of at-risk individuals with asymptomatic lung cancer still remains challenging. We developed a minimal invasive serum test, based on the detection of circulating microRNAs, which can identify at-risk individuals with asymptomatic early stage non-small cell lung carcinomas with 80% accuracy

    NUMB (numb homolog (Drosophila))

    Get PDF
    Review on NUMB (numb homolog (Drosophila)), with data on DNA, on the protein encoded, and where the gene is implicated

    RILP regulates vacuolar ATPase through interaction with the V1G1 subunit

    Get PDF
    Rab-interacting lysosomal protein (RILP) is a downstream effector of the Rab7 GTPase. GTP-bound Rab7 recruits RILP to endosomal membranes and, together, they control late endocytic traffic, phagosome and autophagosome maturation and are responsible for signaling receptor degradation. We have identified, using different approaches, the V1G1 (officially known as ATP6V1G1) subunit of the vacuolar ATPase (V-ATPase) as a RILP-interacting protein. V1G1 is a component of the peripheral stalk and is fundamental for correct V-ATPase assembly. We show here that RILP regulates the recruitment of V1G1 to late endosomal and lysosomal membranes but also controls V1G1 stability. Indeed, we demonstrate that V1G1 can be ubiquitylated and that RILP is responsible for proteasomal degradation of V1G1. Furthermore, we demonstrate that alterations in V1G1 expression levels impair V-ATPase activity. Thus, our data demonstrate for the first time that RILP regulates the activity of the V-ATPase through its interaction with V1G1. Given the importance of V-ATPase in several cellular processes and human diseases, these data suggest that modulation of RILP activity could be used to control V-ATPase function

    The GTPase-activating protein RN-tre controls focal adhesion turnover and cell migration.

    Get PDF
    SummaryBackgroundIntegrin-mediated adhesion of cells to the extracellular matrix (ECM) relies on the dynamic formation of focal adhesions (FAs), which are biochemical and mechanosensitive platforms composed of a large variety of cytosolic and transmembrane proteins. During migration, there is a constant turnover of ECM contacts that initially form as nascent adhesions at the leading edge, mature into FAs as actomyosin tension builds up, and are then disassembled at the cell rear, thus allowing for cell detachment. Although the mechanisms of FA assembly have largely been defined, the molecular circuitry that regulates their disassembly still remains elusive.ResultsHere, we show that RN-tre, a GTPase-activating protein (GAP) for Rabs including Rab5 and Rab43, is a novel regulator of FA dynamics and cell migration. RN-tre localizes to FAs and to a pool of Rab5-positive vesicles mainly associated with FAs undergoing rapid remodeling. We found that RN-tre inhibits endocytosis of β1, but not β3, integrins and delays the turnover of FAs, ultimately impairing β1-dependent, but not β3-dependent, chemotactic cell migration. All of these effects are mediated by its GAP activity and rely on Rab5.ConclusionsOur findings identify RN-tre as the Rab5-GAP that spatiotemporally controls FA remodeling during chemotactic cell migration

    po 466 pi3k c2a regulates mitotic spindle assembly and chemotherapy response in breast cancer

    Get PDF
    Introduction Proper organisation of the mitotic spindle is key to genetic stability but the molecular components of inter-microtubule (MT) bridges that crosslink kinetochore fibres (K-fibres) are still largely unknown. Here, we identify class II phosphoinositide 3-OH kinase a (PI3K-C2α) as a limiting scaffold protein organising the clathrin and TACC3 complex crosslinking K-fibres. Material and methods Pik3c2a+/- mice were intercrossed with a transgenic strain expressing the activated HER-2/Neu oncogene in the mammary gland. Mice were weekly followed for survival, tumour appearance and growth. Primary Murine Mammary Epithelial Tumour (MMET) cells were derived from early and late stage tumours. Truncating PI3KC2α mutants were generated and interaction with TACC3 was tested. Levels of PI3K-C2α expression were assessed by IHC in breast cancer tissue microarrays (TMA) and correlated with response to chemotherapy. Results and discussions Loss of PI3K-C2α expression is a frequent occurrence in breast cancer patients (48%) and correlates with local recurrence and metastatic disease. The heterozygous loss of PI3K-C2α initially delays tumour onset but, on the long run, leads to the convergent evolution of aggressive clones with mitotic checkpoint defects. In line with this, downregulation of PI3K-C2α promotes spindle alterations and aneuploidy, indicating that PI3K-C2α expression is a key determinant of genomic stability. As a consequence of the altered spindle, reduction of PI3K-C2α expression increases the sensitivity to anti-MT drugs, such as paclitaxel, in pre-clinical models and in breast cancer patients. Conclusion Loss of PI3K-C2α expression is a frequent occurrence in breast cancer patients (48%) and correlates with local recurrence and metastatic disease. The heterozygous loss of PI3K-C2α initially delays tumour onset but, on the long run, leads to the convergent evolution of aggressive clones with mitotic checkpoint defects. In line with this, downregulation of PI3K-C2α promotes spindle alterations and aneuploidy, indicating that PI3K-C2α expression is a key determinant of genomic stability. As a consequence of the altered spindle, reduction of PI3K-C2α expression increases the sensitivity to anti-MT drugs, such as paclitaxel, in pre-clinical models and in breast cancer patients

    Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells

    Get PDF
    INTRODUCTION: CCN6/WISP3 belongs to the CCN (Cyr61, CTGF, Nov) family of genes that contains a conserved insulin-like growth factor (IGF) binding protein motif. CCN6 is a secreted protein lost in 80% of the aggressive inflammatory breast cancers, and can decrease mammary tumor growth in vitro and in vivo. We hypothesized that inhibition of CCN6 might result in the loss of a growth regulatory function that protects mammary epithelial cells from the tumorigenic effects of growth factors, particularly IGF-1. METHOD: We treated human mammary epithelial (HME) cells with a CCN6 hairpin short interfering RNA. RESULTS: CCN6-deficient cells showed increased motility and invasiveness, and developed features of epithelial-mesenchymal transition (EMT). Inhibition of CCN6 expression promoted anchorage-independent growth of HME cells and rendered them more responsive to the growth effects of IGF-1, which was coupled with the increased phosphorylation of IGF-1 receptor and insulin receptor substrate-1 (IRS-1). CONCLUSION: Specific stable inhibition of CCN6 expression in HME cells induces EMT, promotes anchorage-independent growth, motility and invasiveness, and sensitizes mammary epithelial cells to the growth effects of IGF-1

    The role of Herceptin in early breast cancer

    Get PDF
    Herceptin is widely regarded as the most important development in the treatment of breast cancer since Tamoxifen and the development of the multidisciplinary team (MDT). It is particularly exciting from an oncological polint of view as it represents success in the emerging field of specific targeted therapies to specific molecular abnormalities in tumour cells. This review will focus on the nature of the Her2 overexpression and the role of herceptin in the treatment of early breast cancer
    • …
    corecore