220 research outputs found

    Very short-lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and Southeast Asia during 2009-2013

    Get PDF
    Short-lived organic brominated compounds make up a significant part of the organic bromine budget in the atmosphere. Emissions of these compounds are highly variable and there are limited measurements, particularly in the extra-tropical upper troposphere/lower stratosphere and tropical troposphere. Measurements of five very short-lived bromomethanes (VSLB) were made in air samples collected on the CARIBIC project aircraft over three flight routes; Germany to Venezuela/Columbia during 2009-2011, Germany to South Africa during 2010 and 2011 and Germany to Thailand/Kuala Lumpur, Malaysia during 2012 and 2013. In the tropical troposphere, as the most important entrance region to the stratosphere, we observe a total mean organic bromine derived from these compounds across all flights at 10-12 km altitude of 3.4 ± 1.5 ppt. Individual mean tropical tropospheric mixing ratios across all flights were 0.43, 0.74, 0.14, 0.23 and 0.11 ppt for CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CH2BrCl respectively. The highest levels of VSLB-derived bromine (4.20 ± 0.56 ppt) were observed in flights between Bangkok and Kuala Lumpur indicating that the South China Sea is an important source region for these compounds. Across all routes, CHBr and CHBr2 accounted for 34% (4.7-71) and 48% (14-73) respectively of total bromine derived from the analysed VSLB in the tropical mid-upper troposphere totalling 82% (54-89). In samples collected between Germany and Venezuela/Columbia, we find decreasing mean mixing ratios with increasing potential temperature in the extra-tropics. Tropical mean mixing ratios are higher than extra-tropical values between 340-350 K indicating that rapid uplift is important in determining mixing ratios in the lower tropical tropopause layer in the West Atlantic tropics. O3 was used as a tracer for stratospherically influenced air and we detect rapidly decreasing mixing ratios for all VSLB above ∼100 ppb O3 corresponding to the extra-tropical tropopause layer

    Investigating African trace gas sources, vertical transport, and oxidation using IAGOS-CARIBIC measurements between Germany and South Africa between 2009 and 2011

    Get PDF
    Between March 2009 and March 2011 a commercial airliner equipped with a custom built measurement container (IAGOS-CARIBIC observatory) conducted 13 flights between South Africa and Germany at 10–12 km altitude, traversing the African continent north-south. In-situ measurements of trace gases (CO, CH4, H2O) and aerosol particles indicated that strong surface sources (like biomass burning) and rapid vertical transport combine to generate maximum concentrations in the latitudinal range between 10°N and 10°S coincident with the inter-tropical convergence zone (ITCZ). Pressurized air samples collected during these flights were subsequently analyzed for a suite of trace gases including C2-C8 non-methane hydrocarbons (NMHC) and halocarbons. These shorter-lived trace gases, originating from both natural and anthropogenic sources, also showed near equatorial maxima highlighting the effectiveness of convective transport in this region. Two source apportionment methods were used to investigate the specific sources of NMHC: positive matrix factorization (PMF), which is used for the first time for NMHC analysis in the upper troposphere (UT), and enhancement ratios to CO. Using the PMF method three characteristic airmass types were identified based on the different trace gas concentrations they obtained: biomass burning, fossil fuel emissions, and “background” air. The first two sources were defined with reference to previously reported surface source characterizations, while the term “background” was given to air masses in which the concentration ratios approached that of the lifetime ratios. Comparison of enhancement ratios between NMHC and CO for the subset of air samples that had experienced recent contact with the planetary boundary layer (PBL) to literature values showed that the burning of savanna and tropical forest is likely the main source of NMHC in the African upper troposphere (10–12 km). Photochemical aging patterns for the samples with PBL contact revealed that the air had different degradation histories depending on the hemisphere in which they were emitted. In the southern hemisphere (SH) air masses experienced more dilution by clean background air whereas in the northern hemisphere (NH) air masses are less diluted or mixed with background air still containing longer lived NMHC. Using NMHC photochemical clocks ozone production was seen in the BB outflow above Africa in the NH

    Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: The influence of prescribed water concentration vs. prescribed emissions

    Get PDF
    Marine-produced short-lived trace gases such as dibromomethane (CH2_{2}Br2_{2}), bromoform (CHBr3_{3}), methyliodide (CH3_{3}I) and dimethyl sulfide (DMS) significantly impact tropospheric and stratospheric chemistry. Describing their marine emissions in atmospheric chemistry models as accurately as possible is necessary to quantify their impact on ozone depletion and Earth’s radiative budget. So far, marine emissions of trace gases have mainly been prescribed from emission climatologies, thus lacking the interaction between the actual state of the atmosphere and the ocean. Here we present simulations with the chemistry climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) with online calculation of emissions based on surface water concentrations, in contrast to directly prescribed emissions. Considering the actual state of the model atmosphere results in a concentration gradient consistent with model realtime conditions at the ocean surface and in the atmosphere, which determine the direction and magnitude of the computed flux. This method has a number of conceptual and practical benefits, as the modelled emission can respond consistently to changes in sea surface temperature, surface wind speed, sea ice cover and especially atmospheric mixing ratio. This online calculation could enhance, dampen or even invert the fluxes (i.e. deposition instead of emissions) of very short-lived substances (VSLS). We show that differences between prescribing emissions and prescribing concentrations (-28%for CH2_{2}Br2_{2} to +11%for CHBr3_{3}) result mainly from consideration of the actual, time-varying state of the atmosphere. The absolute magnitude of the differences depends mainly on the surface ocean saturation of each particular gas. Comparison to observations from aircraft, ships and ground stations reveals that computing the air–sea flux interactively leads in most of the cases to more accurate atmospheric mixing ratios in the model compared to the computation from prescribed emissions. Calculating emissions online also enables effective testing of different air–sea transfer velocity (k) parameterizations, which was performed here for eight different parameterizations. The testing of these different k values is of special interest for DMS, as recently published parameterizations derived by direct flux measurements using eddy covariance measurements suggest decreasing k values at high wind speeds or a linear relationship with wind speed. Implementing these parameterizations reduces discrepancies in modelled DMS atmospheric mixing ratios and observations by a factor of 1.5 compared to parameterizations with a quadratic or cubic relationship to wind speed

    Clusters in the inner spiral arms of M51: the cluster IMF and the formation history

    Get PDF
    We study the cluster population in a region of 3.2x3.2 kpc^2 in the inner spiral arms of the intergacting galaxy M51, at a distance of about 1 to 3 kpc from the nucleus, based on HST--WFPC2 images taken through five broadband and two narrowband filters. We found 877 cluster candidates and we derived their ages, initial masses and extinctions by comparing their energy distribution with the Starburst99 cluster models. We describe the 3 and 2-dimensional least-square energy fitting method that was used (3DEF, 2DEF). The lack of [OIII] emission in even the youngest clusters with strong H-alpha emission, indicates the absence of the most massive stars and suggests a mass upper limit of about 25 to 30 solar masses. The mass versus age distribution of the clusters shows a drastic decrease in the number of clusters with age, which indicates that cluster disruption is occurring on a timescale of about 10 Myr for low mass clusters. The cluster initial mass function for clusters younger than 10 Myr has an exponent of alpha = 2.0 (+- 0.05) We derived the cluster formation history from clusters with an initial mass larger than 10^4 solar masses. There is no evidence for a peak in the cluster formation rate within a factor two at about 200 to 400 Myr ago, i.e. at the time of the interaction with the companion galaxy NGC 5194.Comment: 15 pages, 15 figures. Accepted for publication by Astronomy and Astrophysic

    Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury

    Get PDF
    Aircraft and satellite observations indicate the presence of ppt (ppt ≡ pmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS-Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br–Cl) chemistry than has been done in the past. Important reactions for regenerating BrO from its non-radical reservoirs include HOBr+Br−/Cl− in both aerosols and clouds, and oxidation of Br− by ClNO3 and ozone. Most tropospheric BrO in the model is in the free troposphere, consistent with observations, and originates mainly from the photolysis and oxidation of ocean-emitted CHBr3. Stratospheric input is also important in the upper troposphere. Including production of gas phase inorganic bromine from debromination of acidified sea salt aerosol increases free tropospheric Bry by about 30 %. We find HOBr to be the dominant gas-phase reservoir of inorganic bromine. Halogen (Br-Cl) radical chemistry as implemented here in GEOS-Chem drives 14 % and 11 % decreases in the global burdens of tropospheric ozone and OH, respectively, a 16 % increase in the atmospheric lifetime of methane, and an atmospheric lifetime of 6 months for elemental mercury. The dominant mechanism for the Br-Cl driven tropospheric ozone decrease is oxidation of NOx by formation and hydrolysis of BrNO3 and ClNO3

    Airborne observations of trace gases over boreal Canada during BORTAS: campaign climatology, air mass analysis and enhancement ratios

    Get PDF
    In situ airborne measurements were made over eastern Canada in summer 2011 as part of the BORTAS experiment (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites). In this paper we present observations of greenhouse gases (CO2 and CH4) and other biomass burning tracers (CO, HCN and CH3CN), both climatologically and through case studies, as recorded on board the FAAM BAe-146 research aircraft.Vertical profiles of CO2 were generally characterised by depleted boundary layer concentrations relative to the free troposphere, consistent with terrestrial biospheric uptake. In contrast, CH4 concentrations were found to rise with decreasing altitude due to strong local and regional surface sources. BORTAS observations were found to be broadly comparable with both previous measurements in the region during the regional burning season and with reanalysed composition fields from the EU Monitoring Atmospheric Composition and Change (MACC) project. We use coincident tracer–tracer correlations and a Lagrangian trajectory model to characterise and differentiate air mass history of intercepted plumes. In particular, CO, HCN and CH3CN were used to identify air masses that have been recently influenced by biomass burning.Examining individual cases we were able to quantify emissions from biomass burning. Using both near-field ( 1 day) sampling, boreal forest fire plumes were identified throughout the troposphere. Fresh plumes from fires in northwestern Ontario yield emission factors for CH4 and CO2 of 8.5 ± 0.9 g (kg dry matter)−1 and 1512 ± 185 g (kg dry matter)−1, respectively. We have also investigated the efficacy of calculating emission factors from far-field sampling, in which there might be expected to be limited mixing with background and other characteristic air masses, and we provide guidance on best practice and limitations in such analysis. We have found that for measurements within plumes that originated from fires in northwestern Ontario 2–4 days upwind, emission factors can be calculated that range between 1618 ± 216 and 1702 ± 173 g (kg dry matter)−1 for CO2 and 1.8 ± 0.2 and 6.1 ± 1 g (kg dry matter)−1 for CH4

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
    corecore