34 research outputs found

    Cell Death and Neuronal Replacement during Formation of the Avian Ciliary Ganglion

    Get PDF
    AbstractProgrammed cell death is a prominent feature of embryonic development and is essential in matching the number of neurons to the target tissues that are innervated. Although a decrease in neuronal number which coincides with peripheral synaptogenesis has been well documented in the avian ciliary ganglion, it has not been clear whether cell death also occurs earlier. We observed TUNEL-positive neurons as early as stage 24, with a large peak at stage 29. This cell death at stage 29 was followed by a statistically significant (P < 0.0001) decrease in total neuron number at stage 31. The total number of neurons was recovered by stage 33/34. This suggested that dying neurons were replaced by new neurons. This replacement process did not involve proliferation because bromodeoxyuridine applied at stages 29 and 31 was unable to label neurons harvested at stage 33/34. The peak of cell death at stage 29 was increased 2.3-fold by removal of the optic vesicle and was reduced by 50% when chCNTF was overexpressed. Taken together, these results suggest that the regulation of neuron number in the ciliary ganglion is a dynamic process involving both cell death and neural replacement from postmitotic precursors prior to differentiation and innervation of target tissues

    Activin A and follistatin expression in developing targets of ciliary ganglion neurons suggests a role in regulating neurotransmitter phenotype

    Get PDF
    AbstractThe avian ciliary ganglion contains choroid neurons that innervate choroid vasculature and express somatostatin as well as ciliary neurons that innervate iris/ciliary body but do not express somatostatin. We have previously shown in culture that activin A induces somatostatin immunoreactivity in both neuron populations. We now show in vivo that both targets contain activin A; however, choroid expressed higher levels of activin A mRNA. In contrast, follistatin, an activin A inhibitor, was higher in iris/ciliary body. Iris cell-conditioned medium also contained an activity that inhibited activin A and could be depleted with antifollistatin antibodies. These results suggest that development of somatostatin is limited to choroid neurons by differential expression of activin A and follistatin in ciliary ganglion targets

    Embryonic sympathoblasts transiently express TrkB in vivo and proliferate in response to brain-derived neurotrophic factor in vitro

    Get PDF
    BACKGROUND: Nerve growth factor and neurotrophin-3 are involved in the development of sympathetic neurons; however, whether brain derived neurotrophic factor also plays a role is not known. The purpose of this study was to determine whether BDNF and its receptor, TrkB, are expressed during the development of paravertebral sympathetic ganglia in vivo and to determine the effect of BDNF in vitro. RESULTS: As neural crest cells coalesce to form sympathetic ganglia, TrkB-positive cells are seen in both chicken and mouse embryos. In chicken embryos, TrkB-expressing cells first appear at Hamburger-Hamilton Stage (St) 27 and they co-express HNK-1, confirming that they are migrating neural crest cells. The TrkB-positive cells lack neural markers at this stage; however, they migrate with other neurally differentiating cells that are TrkA and TrkC-positive. By St. 29/30, TrkB-positive cells begin to express the neural specific markers Hu C/D and Islet-1; eventually, all TrkB positive cells commence neural differentiation. By St. 34, TrkB and TrkC staining are lost. BDNF transcript expression parallels that of TrkB. In the mouse, TrkB-positive cells surround newly formed sympathetic ganglia and a small number of TrkB positive cells that co-express tyrosine hydroxylase are seen within ganglia between E13.5-15. In cell culture, many cells from St. 29–30 chicken lumbar sympathetic ganglia express neural markers and are dividing, indicating that they are sympathoblasts. Sympathoblasts and neurons require both nerve growth factor and neurotrophin-3 for survival. BDNF increases the number of cells expressing neural markers in culture by increasing number of cells that incorporate bromodeoxyuridine. In contrast, most TrkB-positive sympathetic cells in vivo are not actively proliferating between E6–E8. CONCLUSION: Developing paravertebral sympathetic ganglia in avian and murine embryos contain a subpopulation of sympathoblasts that transiently express TrkB and ultimately commence neuronal differentiation. These TrkB expressing sympathoblasts are not actively dividing in vivo; yet, when placed in vitro, will divide in response to BDNF. This suggests that the availability of BDNF in vivo fails to reach a threshold necessary to induce proliferation. We suggest that excess TrkB stimulation of sympathoblasts in vivo may lead to the genesis of neuroblastoma

    Non-invasive diagnostic tests for Helicobacter pylori infection

    Get PDF
    BACKGROUND: Helicobacter pylori (H pylori) infection has been implicated in a number of malignancies and non-malignant conditions including peptic ulcers, non-ulcer dyspepsia, recurrent peptic ulcer bleeding, unexplained iron deficiency anaemia, idiopathic thrombocytopaenia purpura, and colorectal adenomas. The confirmatory diagnosis of H pylori is by endoscopic biopsy, followed by histopathological examination using haemotoxylin and eosin (H & E) stain or special stains such as Giemsa stain and Warthin-Starry stain. Special stains are more accurate than H & E stain. There is significant uncertainty about the diagnostic accuracy of non-invasive tests for diagnosis of H pylori. OBJECTIVES: To compare the diagnostic accuracy of urea breath test, serology, and stool antigen test, used alone or in combination, for diagnosis of H pylori infection in symptomatic and asymptomatic people, so that eradication therapy for H pylori can be started. SEARCH METHODS: We searched MEDLINE, Embase, the Science Citation Index and the National Institute for Health Research Health Technology Assessment Database on 4 March 2016. We screened references in the included studies to identify additional studies. We also conducted citation searches of relevant studies, most recently on 4 December 2016. We did not restrict studies by language or publication status, or whether data were collected prospectively or retrospectively. SELECTION CRITERIA: We included diagnostic accuracy studies that evaluated at least one of the index tests (urea breath test using isotopes such as13C or14C, serology and stool antigen test) against the reference standard (histopathological examination using H & E stain, special stains or immunohistochemical stain) in people suspected of having H pylori infection. DATA COLLECTION AND ANALYSIS: Two review authors independently screened the references to identify relevant studies and independently extracted data. We assessed the methodological quality of studies using the QUADAS-2 tool. We performed meta-analysis by using the hierarchical summary receiver operating characteristic (HSROC) model to estimate and compare SROC curves. Where appropriate, we used bivariate or univariate logistic regression models to estimate summary sensitivities and specificities. MAIN RESULTS: We included 101 studies involving 11,003 participants, of which 5839 participants (53.1%) had H pylori infection. The prevalence of H pylori infection in the studies ranged from 15.2% to 94.7%, with a median prevalence of 53.7% (interquartile range 42.0% to 66.5%). Most of the studies (57%) included participants with dyspepsia and 53 studies excluded participants who recently had proton pump inhibitors or antibiotics.There was at least an unclear risk of bias or unclear applicability concern for each study.Of the 101 studies, 15 compared the accuracy of two index tests and two studies compared the accuracy of three index tests. Thirty-four studies (4242 participants) evaluated serology; 29 studies (2988 participants) evaluated stool antigen test; 34 studies (3139 participants) evaluated urea breath test-13C; 21 studies (1810 participants) evaluated urea breath test-14C; and two studies (127 participants) evaluated urea breath test but did not report the isotope used. The thresholds used to define test positivity and the staining techniques used for histopathological examination (reference standard) varied between studies. Due to sparse data for each threshold reported, it was not possible to identify the best threshold for each test.Using data from 99 studies in an indirect test comparison, there was statistical evidence of a difference in diagnostic accuracy between urea breath test-13C, urea breath test-14C, serology and stool antigen test (P = 0.024). The diagnostic odds ratios for urea breath test-13C, urea breath test-14C, serology, and stool antigen test were 153 (95% confidence interval (CI) 73.7 to 316), 105 (95% CI 74.0 to 150), 47.4 (95% CI 25.5 to 88.1) and 45.1 (95% CI 24.2 to 84.1). The sensitivity (95% CI) estimated at a fixed specificity of 0.90 (median from studies across the four tests), was 0.94 (95% CI 0.89 to 0.97) for urea breath test-13C, 0.92 (95% CI 0.89 to 0.94) for urea breath test-14C, 0.84 (95% CI 0.74 to 0.91) for serology, and 0.83 (95% CI 0.73 to 0.90) for stool antigen test. This implies that on average, given a specificity of 0.90 and prevalence of 53.7% (median specificity and prevalence in the studies), out of 1000 people tested for H pylori infection, there will be 46 false positives (people without H pylori infection who will be diagnosed as having H pylori infection). In this hypothetical cohort, urea breath test-13C, urea breath test-14C, serology, and stool antigen test will give 30 (95% CI 15 to 58), 42 (95% CI 30 to 58), 86 (95% CI 50 to 140), and 89 (95% CI 52 to 146) false negatives respectively (people with H pylori infection for whom the diagnosis of H pylori will be missed).Direct comparisons were based on few head-to-head studies. The ratios of diagnostic odds ratios (DORs) were 0.68 (95% CI 0.12 to 3.70; P = 0.56) for urea breath test-13C versus serology (seven studies), and 0.88 (95% CI 0.14 to 5.56; P = 0.84) for urea breath test-13C versus stool antigen test (seven studies). The 95% CIs of these estimates overlap with those of the ratios of DORs from the indirect comparison. Data were limited or unavailable for meta-analysis of other direct comparisons. AUTHORS' CONCLUSIONS: In people without a history of gastrectomy and those who have not recently had antibiotics or proton ,pump inhibitors, urea breath tests had high diagnostic accuracy while serology and stool antigen tests were less accurate for diagnosis of Helicobacter pylori infection.This is based on an indirect test comparison (with potential for bias due to confounding), as evidence from direct comparisons was limited or unavailable. The thresholds used for these tests were highly variable and we were unable to identify specific thresholds that might be useful in clinical practice.We need further comparative studies of high methodological quality to obtain more reliable evidence of relative accuracy between the tests. Such studies should be conducted prospectively in a representative spectrum of participants and clearly reported to ensure low risk of bias. Most importantly, studies should prespecify and clearly report thresholds used, and should avoid inappropriate exclusions

    James G. Townsel (1935–2020)

    No full text

    The Prototoxin Lypd6B Modulates Heteromeric α3β4-Containing Nicotinic Acetylcholine Receptors But Not α7 Homomers

    No full text
    Prototoxins are a diverse family of membrane-tethered molecules expressed in the nervous system that modulate nicotinic cholinergic signaling, but their functions and specificity have yet to be completely explored. We tested the selectivity and efficacy of leukocyte antigen, PLAUR (plasminogen activator, urokinase receptor) domain-containing (LYPD)-6B on α3β4-, α3α5β4-, and α7-containing nicotinic acetylcholine receptors (nAChRs). To constrain stoichiometry, fusion proteins encoding concatemers of human α3, β4, and α5 (D and N variants) subunits were expressed in Xenopus laevis oocytes and testedwith or without LYPD6B. We used the 2-electrode voltage-clamp method to quantify responses to acetylcholine (ACh): agonist sensitivity (EC50), maximal agonist-induced current (Imax), and time constant (τ) of desensitization. For β4-α3-α3-β4-α3 and β4-α3-β4-α3-α3, LYPD6B decreased EC50 from 631 to 79 μM, reduced Imax by at least 59%, and decreased τ. For β4-α3-α5D-β4-α3 and β4-α3-β4-α-α5D, LYPD6B decreased Imax by 63 and 32%, respectively. Thus, LYPD6B acted only on (α3)3(β4)2 and (α3)2(α5D)(β4)2 and did not affect the properties of (α3)2(β4)3, α7, or (α3)2(α5N) (β4)2 nAChRs. Therefore, LYPD6B acts as a mixed modulator that enhances the sensitivity of (α3)3(β4)2 nAChRs to ACh while reducing ACh-induced whole-cell currents. LYPD6B also negatively modulates α3β4 nAChRs that include the α5D common human variant, but not the Nvariant associated with nicotine dependence
    corecore