2,045 research outputs found

    Numerical study of electrostatically-defined quantum dots in bilayer graphene

    Full text link
    Màster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2022-2023. Tutor: Iacopo TorreInteracting quantum many-body systems are so challenging to study that even simplified models, such as the Hubbard model, cannot be solved exactly. For this reason, it is interesting to engineer controllable quantum systems, called quantum simulators, that can emulate the behavior of these models. This makes quantum simulators a promising platform for studying the Hubbard model. These can be implemented, for example, using interacting arrays of quantum dots realized in semiconducting materials. The capability to tune the bands in bilayer graphene with patterned gate electrodes provides an innovative platform to study such a model, as it is the first time to explore the Hubbard model with quantum dots in a twodimensional material. Moreover, this platform opens a wide range of possibilities to study the different parameters of the model. In this work, we study theoretically and numerically realistic models of electrostatically defined quantum dots in bilayer graphene. We can calculate the proposed device’s potential and band-gap landscape induced in bilayer graphene by solving the Poisson equation. The result is then fed to a lowenergy model to calculate the bound states of the quantum dots. This allows calculating the parameters of the corresponding Hubbard model, including tunneling amplitudes and on-site interactions. Our results can be directly used to design quantum-simulation devices based on quantum dots that are realized electrostatically in bilayer graphene

    Validation of a Questionnaire to Assess the Perception of Women with Atopic Dermatitis in Family Planning

    Get PDF
    Introduction: Atopic dermatitis (AD) is a highly frequent chronic inflammatory skin disease. It is important to know how women with AD approach family planning together with their disease. The aim of the present research is to develop and validate a questionnaire for women diagnosed with AD in order to measure their level of desire and gestational information. Materials and Methods: A multicenter cross-sectional study was conducted. Women between 18 and 45 years old with mild, moderate, and severe forms of the disease were included and disease-free controls. An exploratory factorial analysis of the primary components and varimax rotation was used to measure the validity of the construct. Cronbach’s α was used to measure the reliability of the individual scales and the global questionnaire. Results: In total, 150 valid questionnaires were included. The final questionnaire consisted of 23 items that converged on six factors. The six scales had adequate reliability: “Pregnancy” (Cronbach’s alpha = 0.95), “Conception” (Cronbach’s alpha = 0.93), “Concern- information” (Cronbach’s alpha = 0.82), “Breastfeeding” (Cronbach’s alpha = 0.81), “Sexual life” (Cronbach’s alpha = 0.79), and “Family planning” (Cronbach’s alpha = 0.67). The total Cronbach’s alpha of the questionnaire was 0.94. Discussion: This questionnaire is the first specific measurement instrument developed for women with AD of childbearing age that has demonstrated adequate levels of reliability and construct validity. We consider it useful and valuable to study aspects such as family planning in this patient profile, and that can influence their decision to have offsprin

    Gene Editing in Adult Hematopoietic Stem Cells

    Get PDF
    Over the last years, an important development has allowed the scientific community to address a precise and accurate modification of the genome. The first probe of concept appeared with the design and use of engineered zinc-finger nucleases (ZFNs), which was expanded later on with the discovery and engineering of meganucleases and transcription activator-like effector nucleases (TALENs) and finally democratized and made easily available to the whole scientific community with the discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease combination technology. The availability of these tools has allowed a precise gene editing, such as knockout of a specific gene or the correction of a defective gene by means of homologous recombination (HR), taking advantage of the endogenous cell repair machinery. This process was already known and used but was inefficient—efficiency that has been increased more than 100-fold with the addition of the mentioned specific nucleases to the process. Apart from the proper design of the nucleases to recognize and cut the selected site in the cell genome, two main goals need to be adequately addressed to optimize its function: the delivery of the tools into the desired cells and the selection of those where the gene editing process has occurred correctly. Both steps can be easily solved when the source of cells is extensive or can be expanded and manipulated in vitro extensively, such as immortalized cell lines or pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells). However, both steps are critical in the case of primary cells, such as the hematopoietic stem cells (HSCs). HSCs are a rare cell population present in the bone marrow (BM) of higher mammals, and it is the responsible for the maintenance and replenishment of all hematopoietic cells for the lifespan of the animals by means of two fundamental properties: self-renewal and multipotency. HSC population is then the ideal target for the correction of hematopoietic genetic diseases and also for the knockout of the responsible genes to in vitro and in vivo model those hematopoietic diseases. This rare population cannot be expanded and its in vitro manipulation and culture negatively affects their fundamental properties of self-renewal and multipotency. These factors challenge the application of gene editing to HSCs. Important efforts are now ongoing trying to optimize the protocols of gene delivery and selection for HSCs. This chapter will review and discuss how researchers are trying to solve them, all attempts that are ongoing and the potential application of the technology to the patients affected with hematopoietic genetic diseases

    Germline mutations in the spindle assembly checkpoint genes BUB1 and BUB3 are infrequent in familial colorectal cancer and polyposis

    Get PDF
    Germline mutations in BUB1 and BUB3 have been reported to increase the risk of developing colorectal cancer (CRC) at young age, in presence of variegated aneuploidy and reminiscent dysmorphic traits of mosaic variegated aneuploidy syndrome. We performed a mutational analysis of BUB1 and BUB3 in 456 uncharacterized mismatch repair-proficient hereditary non-polyposis CRC families and 88 polyposis cases. Four novel or rare germline variants, one splice-site and three missense, were identified in four families. Neither variegated aneuploidy nor dysmorphic traits were observed in carriers. Evident functional effects in the heterozygous form were observed for c.1965-1G>A, but not for c.2296G>A (p.E766K), in spite of the positive co-segregation in the family. BUB1 c.2473C>T (p.P825S) and BUB3 c.77C>T (p.T26I) remained as variants of uncertain significance. As of today, the rarity of functionally relevant mutations identified in familial and/or early onset series does not support the inclusion of BUB1 and BUB3 testing in routine genetic diagnostics of familial CRC

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
    corecore