22 research outputs found

    Taxation of the fat content of foods for reducing their consumption and preventing obesity or other adverse health outcomes

    Get PDF
    Background: Overweight and obesity are increasing worldwide and are considered to be a major public health issue of the 21st century. Introducing taxation of the fat content in foods is considered a potentially powerful policy tool to reduce consumption of foods high in fat or saturated fat, or both. Objectives: To assess the effects of taxation of the fat content in food on consumption of total fat and saturated fat, energy intake, overweight, obesity, and other adverse health outcomes in the general population. Search methods: We searched CENTRAL, Cochrane Database of Systematic Reviews, MEDLINE, Embase, and 15 other databases and trial registers on 12 September 2019. We handsearched the reference lists of all records of included studies, searched websites of international organizations and institutions (14 October 2019), and contacted review advisory group members to identify planned, ongoing, or unpublished studies (26 February 2020). Selection criteria: In line with Cochrane Effective Practice and Organisation of Care Group (EPOC) criteria, we included the following study types: randomized controlled trials (RCTs), cluster‐randomized controlled trials (cRCTs), non‐randomized controlled trials (nRCTs), controlled before‐after (CBA) studies, and interrupted time series studies. We included studies that evaluated the effects of taxes on the fat content in foods. Such a tax could be expressed as sales, excise, or special value added tax (VAT) on the final product or an intermediary product. Eligible interventions were taxation at any level, with no restriction on the duration or the implementation level (i.e. local, regional, national, or multinational). Eligible study populations were children (zero to 17 years) and adults (18 years or older) from any country and setting. We excluded studies that focused on specific subgroups only (e.g. people receiving pharmaceutical intervention; people undergoing a surgical intervention; ill people who are overweight or obese as a side effect, such as those with thyroiditis and depression; and people with chronic illness). Primary outcomes were total fat consumption, consumption of saturated fat, energy intake through fat, energy intake through saturated fat, total energy intake, and incidence/prevalence of overweight or obesity. We did not exclude studies based on country, setting, comparison, or population. Data collection and analysis: We used standard Cochrane methods for all phases of the review. Risk of bias of the included studies was assessed using the criteria of Cochrane’s ‘Risk of bias’ tool and the EPOC Group’s guidance. Results of the review are summarized narratively and the certainty of the evidence was assessed using the GRADE approach. These steps were done by two review authors, independently. Main results: We identified 23,281 records from searching electronic databases and 1173 records from other sources, leading to a total of 24,454 records. Two studies met the criteria for inclusion in the review. Both included studies investigated the effect the Danish tax on saturated fat contained in selected food items between 2011 and 2012. Both studies used an interrupted time series design. Neither included study had a parallel control group from another geographic area. The included studies investigated an unbalanced panel of approximately 2000 households in Denmark and the sales data from a specific Danish supermarket chain (1293 stores). Therefore, the included studies did not address individual participants, and no restriction regarding age, sex, and socioeconomic characteristics were defined. We judged the overall risk of bias of the two included studies as unclear. For the outcome total consumption of fat, a reduction of 41.8 grams per week per person in a household (P < 0.001) was estimated. For the consumption of saturated fat, one study reported a reduction of 4.2% from minced beef sales, a reduction of 5.8% from cream sales, and an increase of 0.5% to sour cream sales (no measures of statistical precision were reported for these estimates). These estimates are based on a restricted number of food types and derived from sales data; they do not measure individual intake. Moreover, these estimates do not account for other relevant sources of fat intake (e.g. packaged or processed food) or other food outlets (e.g. restaurants or cafeterias); hence, we judged the evidence on the effect of taxation on total fat consumption or saturated fat consumption to be very uncertain. We did not identify evidence on the effect of the intervention on energy intake or the incidence or prevalence of overweight or obesity. Authors' conclusions: Given the very low quality of the evidence currently available, we are unable to reliably establish whether a tax on total fat or saturated fat is effective or ineffective in reducing consumption of total fat or saturated fat. There is currently no evidence on the effect of a tax on total fat or saturated fat on total energy intake or energy intake through saturated fat or total fat, or preventing the incidence or reducing the prevalence of overweight or obesity

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings. Copyright (C) 2021 World Health Organization; licensee Elsevier
    corecore