77 research outputs found

    Developing a Measure to Capture Middle School Students’ Interpretive Understanding of Engineering Design

    Get PDF
    This research paper describes the development of an assessment instrument for use with middle school students that provides insight into students’ interpretive understanding by looking at early indicators of developing expertise in students’ responses to solution generation, reflection, and concept demonstration tasks. We begin by detailing a synthetic assessment model that served as the theoretical basis for assessing specific thinking skills. We then describe our process of developing test items by working with a Teacher Design Team (TDT) of instructors in our partner school system to set guidelines that would better orient the assessment in that context and working within the framework of standards and disciplinary core ideas enumerated in the Next Generation Science Standards (NGSS). We next specify our process of refining the assessment from 17 items across three separate item pools to a final total of three open-response items. We then provide evidence for the validity and reliability of the assessment instrument from the standards of (1) content, (2) meaningfulness, (3) generalizability, and (4) instructional sensitivity. As part of the discussion from the standards of generalizability and instructional sensitivity, we detail a study carried out in our partner school system in the fall of 2019. The instrument was administered to students in treatment (n= 201) and non-treatment (n = 246) groups, wherein the former participated in a two-to-three-week, NGSS-aligned experimental instructional unit introducing the principles of engineering design that focused on engaging students using the Imaginative Education teaching approach. The latter group were taught using the district’s existing engineering design curriculum. Results from statistical analysis of student responses showed that the interrater reliability of the scoring procedures were good-to-excellent, with intra-class correlation coefficients ranging between .72 and .95. To gauge the instructional sensitivity of the assessment instrument, a series of non-parametric comparative analyses (independent two-group Mann-Whitney tests) were carried out. These found statistically significant differences between treatment and non-treatment student responses related to the outcomes of fluency and elaboration, but not reflection

    Adapting a Narrative Curriculum to a Remote Format in the Context of Socially Distanced Middle School Education Resulting from COVID-19

    Get PDF
    This paper describes the development of two versions of an NGSS-aligned principles of engineering design unit for use in middle schools. By employing a narrative framework that can help students to connect more deeply with the human contexts and consequences of the engineering design process, our goal was to enhance students’ cognitive and emotional engagement in the learning of engineering design concepts. We first detail the design of an initial version of the unit, titled The Survivorama, which used narrative to enrich a primarily traditional, in-person teaching approach. We then describe the adapted version of the unit, titled the Molasses Disaster, and the modifications we made to the stories and transmedia story elements that facilitated the creation of a fully remote version of the unit. To investigate questions related to the effectiveness of the remote curriculum in sustaining student engagement in the remote context, we carried out a mixed-methods study that looked at (1) teachers’ characterizations of the effect of the curriculum on student engagement and (2) student learning outcomes as measured by performance assessment tasks. Qualitative analysis of teacher interviews supported the notion that teachers found both versions of the curriculum to be highly engaging for their students, though with some important caveats regarding younger students and students who were less literate. Quantitative analysis comparing 2019 and 2020 student response data for students in the 2019 nontreatment, 2019 treatment, and 2020 treatment groups found statistically significant differences in the pattern of responses for both problem-solving and conceptual drawing performance assessment tasks. The pattern of responses supported the inference that student engagement was similar for students in both the 2019 in-person context and the 2020 remote context, and that both differed significantly from the 2019 nontreatment group

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Characteristics of undiagnosed diseases network applicants: implications for referring providers

    Get PDF
    Abstract Background The majority of undiagnosed diseases manifest with objective findings that warrant further investigation. The Undiagnosed Diseases Network (UDN) receives applications from patients whose symptoms and signs have been intractable to diagnosis; however, many UDN applicants are affected primarily by subjective symptoms such as pain and fatigue. We sought to characterize presenting symptoms, referral sources, and demographic factors of applicants to the UDN to identify factors that may determine application outcome and potentially differentiate between those with undiagnosed diseases (with more objective findings) and those who are less likely to have an undiagnosed disease (more subjective symptoms). Methods We used a systematic retrospective review of 151 consecutive Not Accepted and 50 randomly selected Accepted UDN applications. The primary outcome was whether an applicant was Accepted, or Not Accepted, and, if accepted, whether or not a diagnosis was made. Objective and subjective symptoms and information on prior specialty consultations were collected from provider referral letters. Demographic data and decision data on network acceptance were gathered from the UDN online portal. Results Fewer objective findings and more subjective symptoms were found in the Not Accepted applications. Not Accepted referrals also were from older individuals, reported a shorter period of illness, and were referred to the UDN by their primary care physicians. All of these differences reached statistical significance in comparison with Accepted applications. The frequency of subspecialty consults for diagnostic purposes prior to UDN application was similar in both groups. Conclusions The preponderance of subjective and lack of objective findings in the Not Accepted applications distinguish these from applicants that are accepted for evaluation and diagnostic efforts through the UDN. Not Accepted applicants are referred primarily by their primary care providers after multiple specialist consultations fail to yield answers. Distinguishing between patients with undiagnosed diseases with objective findings and those with primarily subjective findings can delineate patients who would benefit from further diagnostic processes from those who may have functional disorders and need alternative pathways for management of their symptoms. Trial registration clinicaltrials.gov NCT02450851 , posted May 21st 2015

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
    corecore