32 research outputs found

    MEG-based identification of the epileptogenic zone in occult peri-insular epilepsy

    Get PDF
    AbstractIntroductionPresurgical work-ups of patients with pharmacoresistant epileptic seizures can require multiple diagnostic methods if magnetic resonance imaging (MRI) combined with video-EEG monitoring fails to show an epileptogenic lesion. Yet, the added value of available methods is not clear. In particular, only a minority of epilepsy centres apply magnetoencephalography (MEG). This study explores the potential of MEG for patients whose previous sophisticated work-ups missed deep-seated, peri-insular epileptogenic lesions.Patients and methodsThree patients with well documented, frequent, stereotypical hypermotor seizures without clear focus hypotheses after repeated presurgical work-ups including video-EEG-monitoring, 3Tesla (3T) magnetic resonance imaging (MRI), morphometric MRI analysis, PET and SPECT were referred to MEG source localisation.ResultsIn two out of three patients, MEG source localisation identified very subtle morphological abnormalities formerly missed in MRI or classified as questionable pathology. In the third patient, MEG was not reliable due to insufficient detection of epileptic patterns. Here, a 1mm×1mm×1mm 3T fluid-attenuated inversion recovery (FLAIR) MRI revealed a potential epileptogenic lesion. A minimal invasive work-up via lesion-focused depth electrodes confirmed the intralesional seizure onset in all patients, and histology revealed dysplastic lesions. Seizure outcomes were Engel 1a in two patients, and Engel 1d in the third.DiscussionMEG can contribute to the identification of epileptogenic lesions even when multiple previous methods failed, and when the lesions are located in deep anatomical structures such as peri-insular cortex. For epilepsy centres without MEG capability, referral of patients with cryptogenic focal epilepsies to centres with MEG systems may be indicated

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Spectral bandwidth of interictal fast epileptic activity characterizes the seizure onset zone

    No full text
    The foremost aim of presurgical epilepsy evaluation is the delineation of the seizure onset zone (SOZ). There is increasing evidence that fast epileptic activity (FEA, 14–250 Hz) occurring interictally, i.e. between seizures, is predominantly localized within the SOZ. Currently it is unknown, which frequency band of FEA performs best in identifying the SOZ, although prior studies suggest highest concordance of spectral changes with the SOZ for high frequency changes. We suspected that FEA reflects dampened oscillations in local cortical excitatory-inhibitory neural networks, and that interictal FEA in the SOZ is a consequence of reduced oscillatory damping. We therefore predict a narrowing of the spectral bandwidth alongside increased amplitudes of spectral peaks during interictal FEA events. To test this hypothesis, we evaluated spectral changes during interictal FEA in invasive EEG (iEEG) recordings of 13 patients with focal epilepsy. In relative spectra of beta and gamma band changes (14–250 Hz) during FEA, we found that spectral peaks within the SOZ indeed were significantly more narrow-banded and their power changes were significantly higher than outside the SOZ. In contrast, the peak frequency did not differ within and outside the SOZ. Our results show that bandwidth and power changes of spectral modulations during FEA both help localizing the SOZ. We propose the spectral bandwidth as new source of information for the evaluation of EEG data

    How to record high-frequency oscillations in epilepsy: A practical guideline

    No full text
    International audienceObjective: Technology for localizing epileptogenic brain regions plays a central role in surgical planning. Recent improvements in acquisition and electrode technology have revealed that high-frequency oscillations (HFOs) within the 80-500 Hz frequency range provide the neurophysiologist with new information about the extent of the epileptogenic tissue in addition to ictal and interictal lower frequency events. Nevertheless, two decades after their discovery there remain questions about HFOs as biomarkers of epileptogenic brain and there use in clinical practice.Methods: In this review, we provide practical, technical guidance for epileptologists and clinical researchers on recording, evaluation, and interpretation of ripples, fast ripples, and very high-frequency oscillations.Results: We emphasize the importance of low noise recording to minimize artifacts. HFO analysis, either visual or with automatic detection methods, of high fidelity recordings can still be challenging because of various artifacts including muscle, movement, and filtering. Magnetoencephalography and intracranial electroencephalography (iEEG) recordings are subject to the same artifacts.Significance: High-frequency oscillations are promising new biomarkers in epilepsy. This review provides interested researchers and clinicians with a review of current state of the art of recording and identification and potential challenges to clinical translation

    How to record high-frequency oscillations in epilepsy : A practical guideline

    No full text
    Objective: Technology for localizing epileptogenic brain regions plays a central role in surgical planning. Recent improvements in acquisition and electrode technology have revealed that high-frequency oscillations (HFOs) within the 80–500 Hz frequency range provide the neurophysiologist with new information about the extent of the epileptogenic tissue in addition to ictal and interictal lower frequency events. Nevertheless, two decades after their discovery there remain questions about HFOs as biomarkers of epileptogenic brain and there use in clinical practice. Methods: In this review, we provide practical, technical guidance for epileptologists and clinical researchers on recording, evaluation, and interpretation of ripples, fast ripples, and very high-frequency oscillations. Results: We emphasize the importance of low noise recording to minimize artifacts. HFO analysis, either visual or with automatic detection methods, of high fidelity recordings can still be challenging because of various artifacts including muscle, movement, and filtering. Magnetoencephalography and intracranial electroencephalography (iEEG) recordings are subject to the same artifacts. Significance: High-frequency oscillations are promising new biomarkers in epilepsy. This review provides interested researchers and clinicians with a review of current state of the art of recording and identification and potential challenges to clinical translation

    “Within a minute” detection of focal cortical dysplasia

    No full text
    Purpose!#!To evaluate a MRI postprocessing tool for the enhanced and rapid detection of focal cortical dysplasia (FCD).!##!Methods!#!MP2RAGE sequences of 40 consecutive, so far MRI-negative patients and of 32 healthy controls were morphometrically analyzed to highlight typical FCD features. The resulting morphometric maps served as input for an artificial neural network generating a FCD probability map. The FCD probability map was inversely normalized, co-registered to the MPRAGE2 sequence, and re-transferred into the PACS system. Co-registered images were scrolled through 'within a minute' to determine whether a FCD was present or not.!##!Results!#!Fifteen FCD, three subcortical band heterotopias (SBH), and one periventricular nodular heterotopia were identified. Of those, four FCD and one SBH were only detected by MRI postprocessing while one FCD and one focal polymicrogryia were missed, respectively. False-positive results occurred in 21 patients and 22 healthy controls. However, true positive cluster volumes were significantly larger than volumes of false-positive clusters (p < 0.001). The area under the curve of the receiver operating curve was 0.851 with a cut-off volume of 0.05 ml best indicating a FCD.!##!Conclusion!#!Automated MRI postprocessing and presentation of co-registered output maps in the PACS allowed for rapid (i.e., 'within a minute') identification of FCDs in our clinical setting. The presence of false-positive findings currently requires a careful comparison of postprocessing results with conventional MR images but may be reduced in the future using a neural network better adapted to MP2RAGE images
    corecore