40 research outputs found

    Pros and Cons of Peginterferon Versus Nucleos(t)ide Analogues for Treatment of Chronic Hepatitis B

    Get PDF
    The emergence of new and more potent treatment options has markedly changed the treatment landscape of chronic hepatitis B. Both peginterferon and nucleos(t)ide analogues have considerable advantages and limitations, and current treatment guidelines refrain from clearly suggesting a first-line treatment option. Peginterferon offers the advantage of higher sustained response rates in both hepatitis B early antigen (HBeAg)-positive and HBeAg-negative patients, at the price of considerable side effects and high costs. Nucleos(t)ide analogues offer easy daily oral dosing, and newly registered agents can maintain viral suppression for prolonged treatment duration. However, relapse is common after therapy discontinuation and extended therapy therefore often necessary. Prolonged treatment with nucleos(t)ide analogues may enhance chances of virologic and serologic response at the potential cost of the emergence of viral resistance and side effects. Baseline and on-treatment prediction of response may help select patients for peginterferon therapy and can aid individualized treatment decisions concerning therapy continuation or discontinuation

    Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2008 update

    Get PDF
    Large amounts of new data on the natural history and treatment of chronic hepatitis B virus (HBV) infection have become available since 2005. These include long-term follow-up studies in large community-based cohorts or asymptomatic subjects with chronic HBV infection, further studies on the role of HBV genotype/naturally occurring HBV mutations, treatment of drug resistance and new therapies. In addition, Pegylated interferon α2a, entecavir and telbivudine have been approved globally. To update HBV management guidelines, relevant new data were reviewed and assessed by experts from the region, and the significance of the reported findings were discussed and debated. The earlier “Asian-Pacific consensus statement on the management of chronic hepatitis B” was revised accordingly. The key terms used in the statement were also defined. The new guidelines include general management, special indications for liver biopsy in patients with persistently normal alanine aminotransferase, time to start or stop drug therapy, choice of drug to initiate therapy, when and how to monitor the patients during and after stopping drug therapy. Recommendations on the therapy of patients in special circumstances, including women in childbearing age, patients with antiviral drug resistance, concurrent viral infection, hepatic decompensation, patients receiving immune-suppressive medications or chemotherapy and patients in the setting of liver transplantation, are also included

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Crystallization behaviour of TiO2ZrO2TiO_{2}-ZrO_{2} composite nanoparticles

    No full text
    To investigate tumor vascularity by dual source volume perfusion computed tomography (VPCT) in advanced lung adenocarcinoma with positive EGFR-mutant and determine whether any of the VPCT parameters would predict the tumor response to gefitinib.Twelve patients (5 males and 7 females, Median age: 53 years, range: 36 - 69 years) with advanced lung adenocarcinoma received VPCT scan. All patients with positive EGFR-mutant were confirmed by pathological biopsy. After a 6-week therapy of gefitinib, VPCT was repeated and the short-term effect evaluated by the RECIST criteria. The VPCT parameters (blood volume, blood flow and permeability surface) of 12 patients were compared with their differentiation grade and short-term effect.Short-term effects were poor in those cases in whom BF increased after a 6-week of targeted therapy (P = 0.030). BF and PS at pre-therapy were negatively correlated with differentiation grade (r = -0.603, -0.694, P = 0.038, 0.012). There was a negative correlation between the rate of BF decline and differentiation grade (r = -0.686, P = 0.029); a negative correlation existed between the trend of BF and RECIST criteria (r = -0.707, P = 0.010). But there was no significant correlation with differentiation grade (P = 0.059). If the BF decline was considered effective, the dual source VPCT could predict the effect of RECIST criteria. The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of VPCT was 100%, 66.7%, 83.3%, 75% and 100% respectively.Dual source VPCT of advanced lung adenocarcinoma can assess effectively tumor vascularity and perfusion changes after the therapy of gefitinib. It is important in evaluating the response of targeted therapy in lung cancer
    corecore