71 research outputs found

    CD200-CD200R1 inhibitory signaling prevents spontaneous bacterial infection and promotes resolution of neuroinflammation and recovery after stroke

    Full text link
    Abstract Background Ischemic stroke results in a robust inflammatory response within the central nervous system. As the immune-inhibitory CD200-CD200 receptor 1 (CD200R1) signaling axis is a known regulator of immune homeostasis, we hypothesized that it may play a role in post-stroke immune suppression after stroke. Methods In this study, we investigated the role of CD200R1-mediated signaling in stroke using CD200 receptor 1-deficient mice. Mice were subjected to a 60-min middle cerebral artery occlusion and evaluated at days 3 and 7, representing the respective peak and early resolution stages of neuroinflammation in this model of ischemic stroke. Infarct size and behavioral deficits were assessed at both time points. Central and peripheral cellular immune responses were measured using flow cytometry. Bacterial colonization was determined in lung tissue homogenates both after acute stroke and in an LPS model of systemic inflammation. Results In wild-type (WT) animals, CD200R1 was expressed on infiltrating monocytes and lymphocytes after stroke but was absent on microglia. Early after ischemia (72 h), CD200R1-knockout (KO) mice had significantly poorer survival rates and an enhanced susceptibility to spontaneous bacterial colonization of the respiratory tract compared to wild-type (WT) controls, despite no difference in infarct or neurological deficits. While the CNS inflammation was resolved by day 7 post-stroke in WT mice, brain-resident microglia and monocyte activation persisted in CD200R1-KO mice, accompanied by a delayed, augmented lymphocyte response. At this time point, CD200R1-KO mice displayed greater weight loss, more severe neurological deficits, and impaired motor function compared to WT. Systemically, CD200R1-KO mice exhibited signs of persistent infection including lymphopenia, T cell activation and memory conversion, and narrowing of the TCR repertoire. These findings were confirmed in a second model of acute neuroinflammation induced by systemic endotoxin challenge. Conclusion This study defines an essential role of CD200-CD200R1 signaling in stroke. Loss of CD200R1 led to high mortality, increased rates of post-stroke infection, and enhanced entry of peripheral leukocytes into the brain after ischemia, with no increase in infarct size. This suggests that the loss of CD200 receptor leads to enhanced peripheral inflammation that is triggered by brain injury.https://deepblue.lib.umich.edu/bitstream/2027.42/148133/1/12974_2019_Article_1426.pd

    Dating the megalithic culture of Laos: Radiocarbon, optically stimulated luminescence and U/Pb zircon results

    Get PDF
    The megalithic jar sites of Laos (often referred to as the Plain of Jars) remain one of Southeast Asia’s most mysterious and least understood archaeological cultures. The sites, recently inscribed as UNESCO World Heritage, host hollowed stone jars, up to three metres in height, which appear scattered across the landscape, alone or clustered in groups of up to more than 400. Until now, it has not been possible to estimate when the jars were first placed on the landscape or from where the stone was sourced. Geochronological analysis using the age of detrital zircons demonstrates a likely quarry source for one of the largest megalithic jar sites. Optically Stimulated Luminescence (OSL) dating suggests the jars were positioned at the sites potentially as early as the late second millennium BC. Radiocarbon dating of skeletal remains and charcoal samples places mortuary activity around the jars from the 9-13th century AD, suggesting the sites have maintained ritual significance from the period of their initial placement until historic times

    Tissue Glucocorticoid Metabolism in Adrenal Insufficiency:A Prospective Study of Dual-release Hydrocortisone Therapy

    Get PDF
    Background: Patients with adrenal insufficiency (AI) require life-long glucocorticoid (GC) replacement therapy. Within tissues, cortisol (F) availability is under the control of the isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD). We hypothesize that corticosteroid metabolism is altered in patients with AI because of the nonphysiological pattern of current immediate release hydrocortisone (IR-HC) replacement therapy. The use of a once-daily dual-release hydrocortisone (DR-HC) preparation, (Plenadren®), offers a more physiological cortisol profile and may alter corticosteroid metabolism in vivo.Study Design and Methods: Prospective crossover study assessing the impact of 12 weeks of DR-HC on systemic GC metabolism (urinary steroid metabolome profiling), cortisol activation in the liver (cortisone acetate challenge test), and subcutaneous adipose tissue (microdialysis, biopsy for gene expression analysis) in 51 patients with AI (primary and secondary) in comparison to IR-HC treatment and age- and BMI-matched controls.Results: Patients with AI receiving IR-HC had a higher median 24-hour urinary excretion of cortisol compared with healthy controls (72.1 µg/24 hours [IQR 43.6-124.2] vs 51.9 µg/24 hours [35.5-72.3], P = .02), with lower global activity of 11β-HSD2 and higher 5-alpha reductase activity. Following the switch from IR-HC to DR-HC therapy, there was a significant reduction in urinary cortisol and total GC metabolite excretion, which was most significant in the evening. There was an increase in 11β-HSD2 activity. Hepatic 11β-HSD1 activity was not significantly altered after switching to DR-HC, but there was a significant reduction in the expression and activity of 11β-HSD1 in subcutaneous adipose tissue.Conclusion: Using comprehensive in vivo techniques, we have demonstrated abnormalities in corticosteroid metabolism in patients with primary and secondary AI receiving IR-HC. This dysregulation of pre-receptor glucocorticoid metabolism results in enhanced glucocorticoid activation in adipose tissue, which was ameliorated by treatment with DR-HC

    Posttraumatic Stress Disorder Prevalence and Risk of Recurrence in Acute Coronary Syndrome Patients: A Meta-analytic Review

    Get PDF
    BACKGROUND:Acute coronary syndromes (ACS; myocardial infarction or unstable angina) can induce posttraumatic stress disorder (PTSD), and ACS-induced PTSD may increase patients' risk for subsequent cardiac events and mortality. OBJECTIVE:To determine the prevalence of PTSD induced by ACS and to quantify the association between ACS-induced PTSD and adverse clinical outcomes using systematic review and meta-analysis. DATA SOURCES:Articles were identified by searching Ovid MEDLINE, PsycINFO, and Scopus, and through manual search of reference lists. METHODOLOGY/PRINCIPAL FINDINGS:Observational cohort studies that assessed PTSD with specific reference to an ACS event at least 1 month prior. We extracted estimates of the prevalence of ACS-induced PTSD and associations with clinical outcomes, as well as study characteristics. We identified 56 potentially relevant articles, 24 of which met our criteria (N = 2383). Meta-analysis yielded an aggregated prevalence estimate of 12% (95% confidence interval [CI], 9%-16%) for clinically significant symptoms of ACS-induced PTSD in a random effects model. Individual study prevalence estimates varied widely (0%-32%), with significant heterogeneity in estimates explained by the use of a screening instrument (prevalence estimate was 16% [95% CI, 13%-20%] in 16 studies) vs a clinical diagnostic interview (prevalence estimate was 4% [95% CI, 3%-5%] in 8 studies). The aggregated point estimate for the magnitude of the relationship between ACS-induced PTSD and clinical outcomes (ie, mortality and/or ACS recurrence) across the 3 studies that met our criteria (N = 609) suggested a doubling of risk (risk ratio, 2.00; 95% CI, 1.69-2.37) in ACS patients with clinically significant PTSD symptoms relative to patients without PTSD symptoms. CONCLUSIONS/SIGNIFICANCE:This meta-analysis suggests that clinically significant PTSD symptoms induced by ACS are moderately prevalent and are associated with increased risk for recurrent cardiac events and mortality. Further tests of the association of ACS-induced PTSD and clinical outcomes are needed

    Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease. An International Multicenter Study.

    Get PDF
    Rationale: The impact of coronavirus disease (COVID-19) on patients with interstitial lung disease (ILD) has not been established.Objectives: To assess outcomes in patients with ILD hospitalized for COVID-19 versus those without ILD in a contemporaneous age-, sex-, and comorbidity-matched population.Methods: An international multicenter audit of patients with a prior diagnosis of ILD admitted to the hospital with COVID-19 between March 1 and May 1, 2020, was undertaken and compared with patients without ILD, obtained from the ISARIC4C (International Severe Acute Respiratory and Emerging Infection Consortium Coronavirus Clinical Characterisation Consortium) cohort, admitted with COVID-19 over the same period. The primary outcome was survival. Secondary analysis distinguished idiopathic pulmonary fibrosis from non-idiopathic pulmonary fibrosis ILD and used lung function to determine the greatest risks of death.Measurements and Main Results: Data from 349 patients with ILD across Europe were included, of whom 161 were admitted to the hospital with laboratory or clinical evidence of COVID-19 and eligible for propensity score matching. Overall mortality was 49% (79/161) in patients with ILD with COVID-19. After matching, patients with ILD with COVID-19 had significantly poorer survival (hazard ratio [HR], 1.60; confidence interval, 1.17-2.18; P = 0.003) than age-, sex-, and comorbidity-matched controls without ILD. Patients with an FVC of <80% had an increased risk of death versus patients with FVC ≥80% (HR, 1.72; 1.05-2.83). Furthermore, obese patients with ILD had an elevated risk of death (HR, 2.27; 1.39-3.71).Conclusions: Patients with ILD are at increased risk of death from COVID-19, particularly those with poor lung function and obesity. Stringent precautions should be taken to avoid COVID-19 in patients with ILD

    A Meta-analysis of Gene Expression Signatures of Blood Pressure and Hypertension

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p&lt;0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%–9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
    corecore