1,068 research outputs found
Grey scale enhancement by a new self-made contrast agent in early cirrhotic stage of rabbit liver
<p>Abstract</p> <p>Background</p> <p>The development of new ultrasound contrast agents (UCAs) has become one of the most promising fields in ultrasound medicine. This paper evaluates a new self-made contrast agent enhancement effect developed to study the fibrotic stages of the liver in perfusion models <it>in vivo</it>.</p> <p>Methods</p> <p>We constructed experimental models of hepatic fibrosis involving five stages from F0 to F4 via administration of CCL<sub>4 </sub>(0.01 ml/kg BW) every 3 days for 3 months. The intrahepatic circulatory time of the contrast agent was analyzed via an image and Cine-loop display. Calculations of the perfusion-related parameters including the peak signal intensity (PSI) and peak signal intensity time (PIT) of the portal vein and parenchyma were obtained from an analysis of the time-acoustic intensity curve.</p> <p>Results</p> <p>Hepatic artery to vein transmit time (HA-HVTT) was significantly shorter at F4 stage (mean 5.1 seconds) compared with those in other stages (mean 8.3 s, 7.5 s, 6.9 s, 6.6 s, P < 0.01). The average PSI difference of PV-parenchyma was 13.62 dB in F4 stage, demonstrating significant differences between F4 stage and other early stages (P < 0.001).</p> <p>Conclusion</p> <p>These results indicate that the new self-made contrast agent is capable of indicating intrahepatic hemodynamic changes. HA-HVTT and the PSI difference of the microbubble perfusion in liver parenchyma and PV were considered to differentiate the degree of hepatic fibrosis between F4 and other early stages.</p
MiR-223 Suppresses Cell Proliferation by Targeting IGF-1R
To study the roles of microRNA-223 (miR-223) in regulation of cell growth, we established a miR-223 over-expression model in HeLa cells infected with miR-223 by Lentivirus pLL3.7 system. We observed in this model that miR-223 significantly suppressed the proliferation, growth rate, colony formation of HeLa cells in vitro, and in vivo tumorigenicity or tumor formation in nude mice. To investigate the mechanisms involved, we scanned and examined the potential and putative target molecules of miR-223 by informatics, quantitative PCR and Western blot, and found that insulin-like growth factor-1 receptor (IGF-1R) was the functional target of miR-223 inhibition of cell proliferation. Targeting IGF-1R by miR-223 was not only seen in HeLa cells, but also in leukemia and hepatoma cells. The downstream pathway, Akt/mTOR/p70S6K, to which the signal was mediated by IGF-1R, was inhibited as well. The relative luciferase activity of the reporter containing wild-type 3′UTR(3′untranslated region) of IGF-1R was significantly suppressed, but the mutant not. Silence of IGF-1R expression by vector-based short hairpin RNA resulted in the similar inhibition with miR-223. Contrarily, rescued IGF-1R expression in the cells that over-expressed miR-223, reversed the inhibition caused by miR-223 via introducing IGF-1R cDNA that didn't contain the 3′UTR. Meanwhile, we also noted that miR-223 targeted Rasa1, but the downstream molecules mediated by Rasa1 was neither targeted nor regulated. Therefore we believed that IGF-1R was the functional target for miR-223 suppression of cell proliferation and its downstream PI3K/Akt/mTOR/p70S6K pathway suppressed by miR-223 was by targeting IGF-1R
A Nation-Wide multicenter 10-year (1999-2008) retrospective clinical epidemiological study of female breast cancer in china
<p>Abstract</p> <p>Background</p> <p>According to the very limited cancer registry, incidence and mortality rates for female breast cancer in China are regarded to be increasing especially in the metropolitan areas. Representative data on the breast cancer profile of Chinese women and its time trend over years are relatively rare. The aims of the current study are to illustrate the breast cancer profile of Chinese women in time span and to explore the current treatment approaches to female breast cancer.</p> <p>Methods</p> <p>This was a hospital-based nation-wide and multi-center retrospective study of female primary breast cancer cases. China was divided into 7 regions according to the geographic distribution; from each region, one tertiary hospital was selected. With the exception of January and February, one month was randomly selected to represent each year from year 1999 to 2008 at every hospital. All inpatient cases within the selected month were reviewed and related information was collected based on the designed case report form (CRF). The Cancer Hospital/Institute, Chinese Academy of Medical Sciences (CICAMS) was the leading hospital in this study.</p> <p>Results</p> <p>Four-thousand two-hundred and eleven cases were randomly selected from the total pool of 45,200 patients and were included in the analysis. The mean age at diagnosis was 48.7 years (s.d. = 10.5 yrs) and breast cancer peaked in age group 40-49 yrs (38.6%). The most common subtype was infiltrating ductal carcinoma (86.5%). Clinical stage I & II accounted for 60.6% of 4,211 patients. Three-thousand five-hundred and thirty-four cases had estrogen receptor (ER) and progestin receptor (PR) tests, among them, 47.9% were positive for both. Two-thousand eight-hundred and forty-nine cases had human epidermal growth factor receptor 2(HER-2) tests, 25.8% of them were HER-2 positive. Among all treatment options, surgery (96.9% (4,078/4,211)) was predominant, followed by chemotherapy (81.4% (3,428/4,211). Much less patients underwent radiotherapy (22.6% (952/4,211)) and endocrine therapy (38.0% (1,599/4,211)).</p> <p>Conclusions</p> <p>The younger age of breast cancer onset among Chinese women and more advanced tumor stages pose a great challenge. Adjuvant therapy, especially radiotherapy and endocrine therapy are of great unmet needs.</p
Helicobacter pylori regulates iNOS promoter by histone modifications in human gastric epithelial cells. [R. Pero* corresponding author]
Inducible nitric oxide synthase (iNOS) expression is altered in gastrointestinal diseases. Helicobacter pylori (Hp) infection may have a critical role in iNOS disregulation. We undertook this study to investigate possible chromatin changes occurring early during iNOS gene activation as a direct consequence of Hp???gastric cells interaction. We show that Hp infection is followed by different expression and chromatin modifications in gastric cells including (1) activation of iNOS gene expression, (2) chromatin changes at iNOS promoter including decreased H3K9 methylation and increased H3 acetylation and H3K4 methylation levels, (3) selective release of methyl-CpG-binding protein 2 from the iNOS promoter. Moreover, we show that Hp-induced activation of iNOS is delayed, but not eliminated, by the treatment with LSD1 inhibitors. Our data suggest a role for specific chromatin-based mechanisms in the control of human iNOS gene expression upon Hp exposure
Siderophore-based detection of Fe(iii) and microbial pathogens
Siderophores are low-molecular-weight iron chelators that are produced and exported by bacteria, fungi and plants during periods of nutrient deprivation. The structures, biosynthetic logic, and coordination chemistry of these molecules have fascinated chemists for decades. Studies of such fundamental phenomena guide the use of siderophores and siderophore conjugates in a variety of medicinal applications that include iron-chelation therapies and drug delivery. Sensing applications constitute another important facet of siderophore-based technologies. The high affinities of siderophores for both ferric ions and siderophore receptors, proteins expressed on the cell surface that are required for ferric siderophore import, indicate that these small molecules may be employed for the selective capture of metal ions, proteins, and live bacteria. This minireview summaries progress in methods that utilize native bacterial and fungal siderophore scaffolds for the detection of Fe(III) or microbial pathogens.Massachusetts Institute of Technology. Dept. of Chemistr
Lysine Deacetylase (KDAC) Regulatory Pathways: an Alternative Approach to Selective Modulation
Protein lysine deacetylases (KDACs), including the classic Zn2+-dependent histone deacetylases (HDACs) and the nicotinamide adenine dinucleotide (NAD+)-requiring sirtuins, are enzymes that play critical roles in numerous biological processes, particularly the epigenetic regulation of global gene expression programs in response to internal and external cues. Dysregulation of KDACs is characteristic of several human diseases, including chronic metabolic, neurodegenerative, and cardiovascular diseases and many cancers. This has led to the development of KDAC modulators, two of which (HDAC inhibitors vorinostat and romidepsin) have been approved for the treatment of cutaneous T cell lymphoma. By their nature, existing KDAC modulators are relatively nonspecific, leading to pan-KDAC changes and undesired side effects. Given that KDACs are regulated at many levels, including transcriptional, post-translational, subcellular localization, and through their complexation with other proteins, it should be possible to affect specific KDAC activity through manipulation of endogenous signaling pathways. In this Minireview, we discuss our present knowledge of the cellular controls of KDAC activity and examples of their pharmacologic regulation
Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems
The food industry produces a large amount of waste and wastewater, of which most of the constituents are carbohydrates, proteins, lipids, and organic fibers. Therefore food wastes are highly biodegradable and energy rich. Bioelectrochemical systems (BESs) are systems that use microorganisms to biochemically catalyze complex substrates into useful energy products, in which the catalytic reactions take place on electrodes. Microbial fuel cells (MFCs) are a type of bioelectrochemical systems that oxidize substrates and generate electric current. Microbial electrolysis cells (MECs) are another type of bioelectrochemical systems that use an external power source to catalyze the substrate into by-products such as hydrogen gas, methane gas, or hydrogen peroxide. BESs are advantageous due to their ability to achieve a degree of substrate remediation while generating energy. This chapter presents an extensive literature review on the use of MFCs and MECs to remediate and recover energy from food industry waste. These bioelectrochemical systems are still in their infancy state and further research is needed to better understand the systems and optimize their performance. Major challenges and limitations for the use of BESs are summarized and future research needs are identified
Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition
Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3.
Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612.
Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ”
Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018.
Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026.
Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091.
Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190.
Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU).
Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762.
Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202.
Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001
Graphene-Based Nanocomposites for Energy Storage
Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed
- …