34 research outputs found

    Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater

    Get PDF
    AbstractDistillery wastewater contains high organic compounds and nutrients suitable for microorganisms in biological processes such as microbial fuel cell (MFC) which converts the chemical energy contained in organic matter into electricity by microorganisms. The bioelectricity production during the treatment of the distillery wastewater was studied using the air-cathode SCMFCs. The distillery wastewater varied concentrations in the range of 125 to 3,000mg COD L-1 and operated in fed batch mode at 37°C. The results shows that the voltage and current outputs increased with increases in distillery wastewater concentration (0.005-0.055mA). Greater soluble chemical oxygen demand (CODS) removal (29.5-56.7%) and total solids reduction was obtained up 35%. Indicated that the distillery wastewater can produced bioelectricity and can be treated using the membrane-less, air-cathode SCMFCs

    Improvement of Mesophilic Biohydrogen Production from Palm Oil Mill Effluent Using Ozonation Process

    Get PDF
    AbstractBiological fermentative production of hydrogen from the ozonated palm oil mill effluent (POME) was conducted in batch reactors using an anaerobic sludge as a microbial seed. Fermentation was setup at pH 4.0-6.0, varying POME concentration range of 5,000-37,000mg L-1 under mesophilic condition (37°C). The results showed that pH 6.0 is an optimum pH and the maximum hydrogen yield of 28.3mL g-1 COD was obtained. Comparative results of hydrogen production from the raw POME versus the ozonated POME indicated that the ozone pretreatment of POME (mg COD: mg ozone = 102.8) elevated the biodegradability of the POME constituents and significantly enhanced yield and rate of the hydrogen production. Hydrogen production using ozonated POME concentration of 30,000mg L-1 displayed the maximum yield of 182.3mL g-1 COD, which is 49% higher than that from raw POME. Meanwhile the maximum production rate of 43.1mL h-1 was observed at COD concentration of 25,000mg L-1 ozonated POME. Maximum COD removal was 44% at COD concentration of 15,000mg L-1 ozonated POME. This work demonstrated ozonation of POME significant improved performance of hydrogen production

    Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems

    Get PDF
    The food industry produces a large amount of waste and wastewater, of which most of the constituents are carbohydrates, proteins, lipids, and organic fibers. Therefore food wastes are highly biodegradable and energy rich. Bioelectrochemical systems (BESs) are systems that use microorganisms to biochemically catalyze complex substrates into useful energy products, in which the catalytic reactions take place on electrodes. Microbial fuel cells (MFCs) are a type of bioelectrochemical systems that oxidize substrates and generate electric current. Microbial electrolysis cells (MECs) are another type of bioelectrochemical systems that use an external power source to catalyze the substrate into by-products such as hydrogen gas, methane gas, or hydrogen peroxide. BESs are advantageous due to their ability to achieve a degree of substrate remediation while generating energy. This chapter presents an extensive literature review on the use of MFCs and MECs to remediate and recover energy from food industry waste. These bioelectrochemical systems are still in their infancy state and further research is needed to better understand the systems and optimize their performance. Major challenges and limitations for the use of BESs are summarized and future research needs are identified

    CCDC 862200: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    CCDC 862199: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    āļāļēāļĢāļœāļĨāļīāļ•āļžāļĨāļēāļŠāļ•āļīāļāļŠāļĩāļ§āļ āļēāļžāļžāļ­āļĨāļīāđ„āļŪāļ”āļĢāļ­āļāļ‹āļĩāļ­āļąāļĨāļ„āļēāđ‚āļ™āđ€āļ­āļ•āļˆāļēāļāļ™āđ‰āļģāļĄāļąāļ™āļ›āļēāļĨāđŒāļĄ āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļŠāļ·āđ‰āļ­ Pseudomonas aeruginosa TISTR 1287Production of Polyhydroxyalkanoates Bioplastic from Palm Oil using Pseudomonas aeruginosa TISTR 1287

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļĄāļĩāļœāļĨāļ•āđˆāļ­āļāļēāļĢāļœāļĨāļīāļ•āļžāļĨāļēāļŠāļ•āļīāļāļŠāļĩāļ§āļ āļēāļžāļ›āļĢāļ°āđ€āļ āļ—āļžāļ­āļĨāļīāđ„āļŪāļ”āļĢāļ­āļāļ‹āļĩāļ­āļąāļĨāļ„āļē-āđ‚āļ™āđ€āļ­āļ• āđ‚āļ”āļĒāđƒāļŠāđ‰āļ™āđ‰āļģāļĄāļąāļ™āļ›āļēāļĨāđŒāļĄāđ€āļ›āđ‡āļ™āđāļŦāļĨāđˆāļ‡āļ„āļēāļĢāđŒāļšāļ­āļ™ āļ‚āļ­āļ‡ Pseudomonas aeruginosa TISTR 1287 āļ—āļģāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđ‚āļ”āļĒāđāļ›āļĢāļœāļąāļ™āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļ™āđ‰āļģāļĄāļąāļ™āļ›āļēāļĨāđŒāļĄāđƒāļ™āļ­āļēāļŦāļēāļĢāđ€āļĨāļĩāđ‰āļĒāļ‡āđ€āļŠāļ·āđ‰āļ­āđ€āļĢāļīāđˆāļĄāļ•āđ‰āļ™āļ—āļĩāđˆ 0.50, 0.75, 1.00, 1.50 āđāļĨāļ° 2.00 % āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ•āđˆāļ­āļ›āļĢāļīāļĄāļēāļ•āļĢ (āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļāļĢāļ”āļ”āđˆāļēāļ‡ 6.90) āļ—āļģāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāļāļ°āđƒāļ™āļ•āļđāđ‰āļšāđˆāļĄāđ€āļ‚āļĒāđˆāļē āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļī 30āđC āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĢāļ­āļš 180 āļĢāļ­āļšāļ•āđˆāļ­āļ™āļēāļ—āļĩ āļˆāļēāļāļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āļ™āđ‰āļģāļĄāļąāļ™āļ›āļēāļĨāđŒāļĄāļ™āļąāđ‰āļ™ āļĄāļĩāļœāļĨāļ•āđˆāļ­āļāļēāļĢāđ€āļˆāļĢāļīāļāđ€āļ•āļīāļšāđ‚āļ• āđāļĨāļ°āļ™āđ‰āļģāļŦāļ™āļąāļāđ€āļ‹āļĨāļĨāđŒāđāļŦāđ‰āļ‡āļ‚āļ­āļ‡ P. aeruginosa TISTR 1287 āđ‚āļ”āļĒāļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™ 0.75% āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ•āđˆāļ­āļ›āļĢāļīāļĄāļēāļ•āļĢ āļĄāļĩāļ›āļĢāļīāļĄāļēāļ“āļ™āđ‰āļģāļŦāļ™āļąāļāđ€āļ‹āļĨāļĨāđŒāđāļŦāđ‰āļ‡āļŠāļđāļ‡āļŠāļļāļ” āđ€āļ—āđˆāļēāļāļąāļš 2.33 āļāļĢāļąāļĄ āļ•āđˆāļ­āļĨāļīāļ•āļĢ āđƒāļ™āļŠāļąāđˆāļ§āđ‚āļĄāļ‡āļāļēāļĢāļŦāļĄāļąāļāļ—āļĩāđˆ 44 āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļŠāđˆāļ§āļ‡āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļ‚āļ­āļ‡āļāļēāļĢāļŦāļĄāļąāļāļ­āļēāļŦāļēāļĢāļ™āļąāđ‰āļ™āļĒāļąāļ‡āļĄāļĩāļœāļĨāļ•āđˆāļ­āļāļēāļĢāļœāļĨāļīāļ•āđāļĨāļ°āļāļēāļĢāļŠāļ°āļŠāļĄÂ  āļžāļ­āļĨāļīāđ„āļŪāļ”āļĢāļ­āļāļ‹āļĩāļ­āļąāļĨāļ„āļēāđ‚āļ™āđ€āļ­āļ•āļ‚āļ­āļ‡āđāļšāļ„āļ—āļĩāđ€āļĢāļĩāļĒ āđ‚āļ”āļĒāļ›āļĢāļīāļĄāļēāļ“āđāļĨāļ°āļœāļĨāļœāļĨāļīāļ•āļžāļ­āļĨāļīāđ„āļŪāļ”āļĢāļ­āļāļ‹āļĩāļ­āļąāļĨāļ„āļēāđ‚āļ™āđ€āļ­āļ•āļ—āļĩāđˆāļŠāļāļąāļ”āđ„āļ”āđ‰ āļˆāļ°āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ•āļēāļĄāļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļ‚āļ­āļ‡āļāļēāļĢāļŦāļĄāļąāļāļ—āļĩāđˆāļĄāļēāļāļ‚āļķāđ‰āļ™āđāļĨāļ°āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļŠāļđāļ‡āļŠāļļāļ”āļ—āļĩāđˆāļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļāļēāļĢāļŦāļĄāļąāļ 72 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļĄāļĩāļ›āļĢāļīāļĄāļēāļ“ āļžāļ­āļĨāļīāđ„āļŪāļ”āļĢāļ­āļāļ‹āļĩāļ­āļąāļĨāļ„āļē-āđ‚āļ™āđ€āļ­āļ• 0.65 āļāļĢāļąāļĄāļ•āđˆāļ­āļĨāļīāļ•āļĢ (38.01%) āđ€āļĄāļ·āđˆāļ­āļ™āļģāđ€āļ‹āļĨāļĨāđŒāđāļšāļ„āļ—āļĩāđ€āļĢāļĩāļĒāđ„āļ›āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļœāđˆāļēāļ™āļāļĨāđ‰āļ­āļ‡āļˆāļļāļĨāļ—āļĢāļĢāļĻāļ™āđŒāļŸāļĨāļđāļ­āļ­āđ€āļĢāļŠāđ€āļ‹āļ™āļ•āđŒ āļžāļšāļ§āđˆāļēāđ€āļ‹āļĨāļĨāđŒāđāļšāļ„āļ—āļĩāđ€āļĢāļĩāļĒāļĄāļĩāļāļēāļĢāđ€āļĢāļ·āļ­āļ‡āđāļŠāļ‡āļŠāļĩāđāļ”āļ‡āļ‚āļ­āļ‡āļŠāļĩāļĒāđ‰āļ­āļĄ Nile red āđ„āļ”āđ‰āļŠāļąāļ”āđ€āļˆāļ™ āđƒāļ™āļ‚āļ“āļ°āđ€āļ”āļĩāļĒāļ§āļāļąāļ™āļāđ‡āļŠāļēāļĄāļēāļĢāļ–āđ€āļŦāđ‡āļ™āļĨāļąāļāļĐāļ“āļ°āļ‚āļ­āļ‡āļžāļ­āļĨāļīāđ„āļŪāļ”āļĢāļ­āļ-āļ‹āļĩāļ­āļąāļĨāļ„āļēāđ‚āļ™āđ€āļ­āļ•āļ—āļĩāđˆāđāļšāļ„āļ—āļĩāđ€āļĢāļĩāļĒāļŠāļ°āļŠāļĄāđ„āļ§āđ‰āđƒāļ™āļĢāļđāļ›āļ‚āļ­āļ‡āđ€āđāļāļĢāļ™āļđāļĨāļŠāļĩāļ‚āļēāļ§āļ­āļĒāđˆāļēāļ‡āļŠāļąāļ”āđ€āļˆāļ™ āđ€āļĄāļ·āđˆāļ­āļ™āļģāđ„āļ›āļŠāđˆāļ­āļ‡āļœāđˆāļēāļ™āļāļĨāđ‰āļ­āļ‡āļˆāļļāļĨāļ—āļĢāļĢāļĻāļ™āđŒāļ­āļīāđ€āļĨāđ‡āļāļ•āļĢāļ­āļ™āđāļšāļšāļŠāđˆāļ­āļ‡āļœāđˆāļēāļ™ āļˆāļēāļāļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡ āļˆāļķāļ‡āļŠāļĢāļļāļ›āđ„āļ”āđ‰āļ§āđˆāļē P. aeruginosa TISTR 1287 āļŠāļēāļĄāļēāļĢāļ–āđƒāļŠāđ‰āļ™āđ‰āļģāļĄāļąāļ™āļ›āļēāļĨāđŒāļĄāđ€āļ›āđ‡āļ™āđāļŦāļĨāđˆāļ‡āļ„āļēāļĢāđŒāļšāļ­āļ™āđ€āļžāļ·āđˆāļ­āļœāļĨāļīāļ•āļžāļĨāļēāļŠāļ•āļīāļāļŠāļĩāļ§āļ āļēāļžāļŠāļ™āļīāļ”āļžāļ­āļĨāļīāđ„āļŪāļ”āļĢāļ­āļāļ‹āļĩāļ­āļąāļĨāļ„āļēāđ‚āļ™āđ€āļ­āļ•āđ„āļ”āđ‰AbstractThis research aimed to investigate factors affecting the production of polyhydroxyalkanoates (PHAs) from palm oil as a carbon source by Pseudomonas aeruginosa TISTR 1287. The experiments were set-up a batch in an orbital shaker incubator at 30āđC with 180 rpm. Four concentrations (0.50, 0.75, 1.00, 1.50 and 2.00 % (w/v)) of palm oil were tested and initial pH in the culture medium was fixed at 6.90. The results showed that the concentrations of palm oil have the effect on cell growth and cell dry weight of P. aeruginosa TISTR 1287. The maximum cell dry weight at 44 hrs was 2.33 g L-1 obtained from the palm oil concentration of 0.75% (w/v). Moreover, the culture time also affected the cells growth and intracellular accumulation of PHAs. The PHAs concentration and content were increased when increasing the culture time from 0 to 72 hours. The maximum PHAs concentration was 0.65 g L-1 and PHAs content was 38.01 % when cultured in medium with 0.75% (w/v) palm oil at 72 hrs fermentation. The microbial cells in the culture medium showed high red fluorescent, when the cells were determined using the fluorescent dye Nile red. The PHAs granules of intracellular the microbial cell were seen easily (white granules) by transmission electron microscope. The results demonstrated that P. aeruginosa TISTR 1287 can be used palm oil as a carbon source for producing the PHAs based bioplastics in an intracellular
    corecore