126 research outputs found

    The genomic evolution of human prostate cancer.

    Get PDF
    Prostate cancers are highly prevalent in the developed world, with inheritable risk contributing appreciably to tumour development. Genomic heterogeneity within individual prostate glands and between patients derives predominantly from structural variants and copy-number aberrations. Subtypes of prostate cancers are being delineated through the increasing use of next-generation sequencing, but these subtypes are yet to be used to guide the prognosis or therapeutic strategy. Herein, we review our current knowledge of the mutational landscape of human prostate cancer, describing what is known of the common mutations underpinning its development. We evaluate recurrent prostate-specific mutations prior to discussing the mutational events that are shared both in prostate cancer and across multiple cancer types. From these data, we construct a putative overview of the genomic evolution of human prostate cancer

    Characteristics of suicide attempters with family history of suicide attempt: a retrospective chart review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Family history of suicide attempt is one of the risks of suicide. We aimed at exploring the characteristics of Japanese suicide attempters with and without a family history of suicide attempt.</p> <p>Methods</p> <p>Suicide attempters admitted to an urban emergency department from 2003 to 2008 were interviewed by two attending psychiatrists on items concerning family history of suicide attempt and other sociodemographic and clinical information. Subjects were divided into two groups based on the presence or absence of a family history of suicide attempt, and differences between the two groups were subsequently analyzed.</p> <p>Results</p> <p>Out of the 469 suicide attempters, 70 (14.9%) had a family history of suicide attempt. A significantly higher rate of suicide motive connected with family relations (odds ratio 2.21, confidence interval 1.18–4.17, <it>p </it>< .05) as well as a significantly higher rate of deliberate self-harm (odds ratio 2.51, confidence interval 1.38–4.57, <it>p </it>< .05) were observed in patients with a family history of suicide compared to those without such history. No significant differences were observed in other items investigated.</p> <p>Conclusion</p> <p>The present study has revealed the characteristics of suicide attempters with a family history of suicide attempt. Further understanding of the situation of such individuals is expected to lead to better treatment provision and outcomes, and family function might be a suitable focus in their treatment.</p

    Review of the role of gut microbiota in mass rearing of the olive fruit fly, Bactrocera oleae, and its parasitoids

    Get PDF
    The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is the major insect pest in commercial olive (Olea europaea L., Oleaceae) production worldwide. Its population management is largely based on the use of insecticides. However, concerns about the impact of insecticides on the environment and human health along with increasing resistance development calls for novel and environment-friendly approaches for population management. Integrated pest management programmes with a sterile insect technique (SIT) component and parasitoids are currently considered for the control of B. oleae. A major challenge for the development of such tools is mass rearing of both host and parasitoids. In this review, we consider the role of endogenous microbiota and its potential exploitation for improving the efficacy, quality, and cost effectiveness of mass rearing B. oleae as well as their parasitoids

    Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    Get PDF
    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Breaking point: the genesis and impact of structural variation in tumours

    Get PDF
    Somatic structural variants undoubtedly play important roles in driving tumourigenesis. This is evident despite the substantial technical challenges that remain in accurately detecting structural variants and their breakpoints in tumours and in spite of our incomplete understanding of the impact of structural variants on cellular function. Developments in these areas of research contribute to the ongoing discovery of structural variation with a clear impact on the evolution of the tumour and on the clinical importance to the patient. Recent large whole genome sequencing studies have reinforced our impression of each tumour as a unique combination of mutations but paradoxically have also discovered similar genome-wide patterns of single-nucleotide and structural variation between tumours. Statistical methods have been developed to deconvolute mutation patterns, or signatures, that recur across samples, providing information about the mutagens and repair processes that may be active in a given tumour. These signatures can guide treatment by, for example, highlighting vulnerabilities in a particular tumour to a particular chemotherapy. Thus, although the complete reconstruction of the full evolutionary trajectory of a tumour genome remains currently out of reach, valuable data are already emerging to improve the treatment of cancer
    corecore