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Abstract The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is themajor insect pest in commer-

cial olive (Olea europaea L., Oleaceae) production worldwide. Its population management is largely

based on the use of insecticides. However, concerns about the impact of insecticides on the environ-

ment and human health along with increasing resistance development calls for novel and environ-

ment-friendly approaches for population management. Integrated pest management programmes

with a sterile insect technique (SIT) component and parasitoids are currently considered for the con-

trol of B. oleae. A major challenge for the development of such tools is mass rearing of both host and

parasitoids. In this review, we consider the role of endogenous microbiota and its potential exploita-

tion for improving the efficacy, quality, and cost effectiveness of mass rearing B. oleae as well as their

parasitoids.

Introduction

Tephritid fruit flies (Diptera), particularly species belong-

ing to the genera Anastrepha, Bactrocera, Ceratitis, Dacus,

Rhagoletis, and Zeugodacus, are among themost important

pests for the horticultural industry in tropical, subtropical,

and temperate regions (Hendrichs et al., 2015). The olive

fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is

the single major insect pest in commercial olive produc-

tion (Olea europaea L., Oleaceae) (Haniotakis, 2005).

Female oviposition creates damage to table olives, but

most damage to the fruit is caused by B. oleae larvae,

which are specialist feeders on olives. The losses caused by

B. oleae are substantial and frequently exceed 30% of total

olive production (Weems & Nation, 1999; Bueno & Jones,

2002). A recent detailed account of the impact of the dam-

age caused by B. oleae infestation has been presented by

Malheiro et al. (2015).

Symbiotic bacteria play a major role in several aspects of

insect biology, ecology, and evolution, affecting among

others nutrition, immunity, reproduction, behaviour, and

pest status (Engel & Moran, 2013; Wingfield et al., 2016;

Hosokawa et al., 2017). Here, we review the current

knowledge in respect to the population control of the olive

fruit fly with emphasis on the importance of insect-asso-

ciated microbiota for the mass production of high-quality

insects required for large-scale area-wide integrated pest

management (AW-IPM) projects. These include the appli-

cation of the sterile insect technique (SIT) and augmenta-

tive release of parasitoids. After providing the most

relevant current knowledge regarding SIT and available

parasitoids for B. oleae, the mass-rearing challenges are

described in detail for both pest control methods. The final

part of the review explores the potential for practical appli-

cation of gut microbes to improve rearing of B. oleae and

its parasitoids. Throughout the review, B. oleae is com-

pared to its relatives, in particular to the successfully mass-

reared Mediterranean fruit fly (medfly), Ceratitis capitata

(Wiedemann). As knowledge on bacteria, fungi, and other

microbes in parasitoids of B. oleae is scarce, available

knowledge from other host–parasitoid systems is used as a

source of suggestions for potential research foci.

*Correspondence: Kostas Bourtzis, Insect Pest Control Laboratory,
Joint FAO/IAEADivision of Nuclear Techniques in Food and

Agriculture, PO Box 100, 1400 Vienna, Austria.

E-mail: K.Bourtzis@iaea.org

© 2017 The Authors. Entomologia Experimentalis et Applicata published by JohnWiley & Sons Ltd
on behalf of Netherlands Entomological Society Entomologia Experimentalis et Applicata 164: 237–256, 2017 237
This is an open access article under the terms of the Creative Commons Attribution License,
which permits use, distribution and reproduction in anymedium, provided the original work is properly cited.

DOI: 10.1111/eea.12609

http://creativecommons.org/licenses/by/4.0/


Olive fruit fly pest control: SITand parasitoid release

Current control methods against B. oleae are largely

based on the use of insecticides, bait sprays (GF-120),

and mass trapping (Haniotakis, 2005). Intensive use of

insecticides and baits sprays may have undesirable

effects such as insecticide resistance in B. oleae or killing

of non-target insects, whereas mass trapping has a lower

efficiency (Vassiliou et al., 1985; Haniotakis, 2005; Ste-

wart & Johnson, 2008; Daane & Johnson, 2010; Kakani

et al., 2010). Generally, pesticide use can be reduced

and the effectiveness of IPM can be increased by the

integration of various pest control techniques and their

application in an area-wide manner (Carlson & Wet-

zstein, 1993; Klassen, 2005; Hendrichs et al., 2007). An

example of a successful and cost-beneficial AW-IPM

programme is that against the medfly; this programme

has eliminated the pest from the USA and Mexico, thus

protecting a multi-billion USD horticultural industry

(Salcedo-Baca et al., 2009; Enkerlin et al., 2015). This

programme has been based on an integrated approach

combining surveillance with ground or aerial bait

sprays, fruit stripping, mass trapping, SIT, and GIS-

aided predictive models (Klassen, 2005; Enkerlin et al.,

2015).

SIT and the application of parasitoids can be comple-

mentary approaches, as natural enemies (parasitoids) gen-

erally work better when the host density is high, whereas

SIT is generally more efficient at low densities according to

theoretical models and field studies (Barclay, 1987; Bloem

et al., 1998). The integration of SIT and parasitoids as

components of AW-IPM programmes for the population

suppression of B. oleae has been suggested (Nestel et al.,

2016).

SIT depends on the mass rearing of a target species,

the sterilization of these mass-reared insects (ideally

males) using ionizing irradiation, and the handling,

transport, and release of large numbers of sterilized

males over the release site. These sterile males compete

with wild males for mating with the wild females and

these matings produce no offspring, resulting in a reduc-

tion in pest population growth. Continuous releases of

sterile males at high ratios to wild males can effectively

suppress the target population (Klassen, 2005; Klassen &

Curtis, 2005). Previous work has shown that SIT can

also be a promising tool for the population control of

B. oleae (Economopoulos et al., 1977; Estes et al., 2011).

However, as reviewed previously, the main problem for

the deployment of large-scale SIT applications against

B. oleae has been the lack of a standardized procedure

for the mass rearing of high-quality sterile males (Econo-

mopoulos & Zervas, 1982; Estes et al., 2011).

Parasitoids are important biological control agents in

AW-IPM programmes against major agricultural pests

including several fruit fly species (Montoya et al.,

2007). Compared to other natural enemies of B. oleae

(such as ants and generalist ectoparasitoids), parasitoid

wasps are more specialized, which is beneficial in bio-

logical control (Daane et al., 2015). Parasitoids have

the potential to significantly contribute to the popula-

tion control B. oleae. For instance, in South Africa, the

damage of B. oleae is minimal due to the resident natu-

ral enemy fauna (Hancock, 1989), of which parasitic

wasps are the main component (Walton et al., 2005).

Several species of parasitoids targeting olive flies are

available (Hoelmer et al., 2011; Wharton & Yoder,

2016) and some species have been released and tested

(Table 1). However, their potential as a component of

AW-IPM has not yet been realised for several reasons,

among which inefficient mass rearing.

Olive fruit fly mass rearing

Although B. oleae can be reared on artificial diet under

laboratory conditions, its large-scale mass rearing, needed

for SIT, has proven challenging (Manoukas, 1975; Estes

et al., 2011).When small-scale rearing is upgraded to mass

rearing, the quality, fecundity, production stability, and

costs are important factors in determining the insect qual-

ity and thus the project’s success (Calkins & Parker, 2005;

Parker, 2005). The same is also true for parasitoids whose

large-scale mass rearing depends on the efficient, high-

quality, and cost-effective mass production of their hosts.

In respect to the mass rearing of B. oleae, the bottleneck

lies in the larval stage. For B. oleae culturing, it is not prac-

tical, and certainly not cost effective, to provide fresh olives

year-round, so the larvae need to be produced on an artifi-

cial diet. Artificial diets are commonly used in fruit fly

rearing facilities, but are usually the most expensive com-

ponent of the rearing procedure (Parker, 2005). They are

also difficult to design as there are many factors that can

influence insect quality, such as pH and preservatives,

nutritional elements, moisture, texture, and microbes

(Cohen, 2003; Lance & McInnis, 2005). The fact that

B. oleae larvae are specialists on olives makes it difficult to

grow this life stage efficiently as it is generally more diffi-

cult to find a suitable diet for specialist feeders (Parker,

2005). It has indeed proven particularly difficult to develop

an efficient artificial diet for B. oleae larvae that produces

enough pupae because they are very sensitive to diet

changes (e.g., different batches of the same dried yeast)

compared to other fruit flies (Tzanakakis, 1989).

The diet used nowadays for B. oleae is still very similar

to the ones developed in the 1960s and 1970s
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(Economopoulos & Tzanakakis, 1967; Estes et al., 2011).

Although the larvae are able to survive on this artificial

diet, their survival rate from larval to pupal stage is vari-

able, especially in mass rearing (Ahmad et al., 2016). In

addition, the yield is not high enough with ca. 2 000

pupae kg�1 diet (Estes et al., 2011). In comparison, in the

largest SIT production facility of the medfly (the Mos-

camed project) 10 000 pupae kg�1 are produced (C�aceres,

2002; C�aceres et al., 2002). This medfly mass rearing facil-

ity shows the enormous scale at which these insects can be

reared, with a capacity to produce more than 2 000 mil-

lion sterile males per week (Enkerlin et al., 2015). Besides

variable and relatively low yields, the costs for the B. oleae

larval diet are relatively high (compared to medfly diet) as

expensive hydrolysed proteins and anti-pathogen ingredi-

ents are required in the current formulation (Economo-

poulos & Tzanakakis, 1967; Yokoyama, 2015; C. C�aceres-

Barrios, pers. obs.). Therefore, it is important to find other

ingredients that can provide a balance between cost and

quality (Ahmad et al., 2014).

Parasitoid mass rearing

Mass rearing of parasitoids is a major component of the

biological control industry (van Lenteren, 2000). There are

several critical factors in the mass rearing of parasitoids

that may be affected upon laboratory domestication, such

as environmental conditions for adults and for infested

host larvae and pupae (temperature, humidity, photope-

riod, microbial pathogens – particularly fungi), host suit-

ability (species, developmental stage, age, quality, diet,

symbionts), parasitoid density (food, competition), super-

parasitism, diapause, genetic diversity, andmicrobial flora.

It has been shown, for example, that density as well as diet

during rearing can affect fitness parameters in parasitoids

(Harvey et al., 1995; Loni, 2003; Zboralski et al., 2016).

The problems of superparasitism and competition

between wasp larvae in the host can be remedied by limit-

ing the exposure density and ovipositing time of the wasps

to achieve an optimal number of parasitoid eggs per host

(Loni, 2003). In egg parasitoids, special methods are

needed for egg exposure (Bautista et al., 1999). Other

potential problems, which have been observed in many

parasitoids, are skewed sex ratios and lack of mating

(Waage et al., 1985; Bautista et al., 1999; Montoya et al.,

2011).

The quality of parasitoid wasps is important in terms of

size, longevity, fecundity, progeny sex ratio, and parasitism

rate (Messing et al., 1993; Eben et al., 2000; Yokoyama

et al., 2012). Besides quality, field efficacy is also essential,

for which flight (Messing et al., 1997) and host localiza-

tion (Eben et al., 2000) are important parameters. As for

most biological control agents, a strain of a beneficial para-

sitoid would ideally be entirely consisting of long-lived

females parasitizing many hosts (Hoffmann et al., 2001).

An additional challenge for the mass rearing of parasitoids

is that the host species is alsomass reared efficiently to pro-

duce the substrate for the parasitoids to develop in. For

AW-IPM projects with a SIT component, the ideal practi-

cal method for parasitoid rearing is to use the host that

one targets for sterile male releases. There are several indi-

cations that using the target pest species as a host may be

critical for the production of high-quality parasitoids

(Hoffmann et al., 2001; Daane et al., 2015).

Rearing parasitoids on B. oleae is currently challenging

and expensive due to the lack of a robust and cost-effi-

cient rearing system of the host. However, a closely

related species can be used as an alternative host, e.g.,

the parasitoids Psyttalia concolor (Sz�epligeti), Psyttalia

humilis (Silvestri), and Diachasmimorpha longicaudata

(Ashmead) can be successfully reared on medfly

(Yokoyama et al., 2006; Ovruski et al., 2011; Daane

et al., 2015). This is an advantage when insufficient

B. oleae larvae are available, but may lead to wasps that

are less efficient on B. oleae. This is illustrated by the

search behaviour of P. concolor that has proven more

efficient after previous exposure to B. oleae larvae

(Canale & Benelli, 2012). It remains unclear though

whether this host habituation effect is due to the host

larva itself or the used larval medium (olive pulp).

It is a general practice that host medfly larvae are irradi-

ated before exposing them to parasitoids (Cancino et al.,

2012; Yokoyama et al., 2012). This practice causes the

medflies to die before emergence, thus eliminating the risk

of releasing fertile hosts in the target area, as well as elimi-

nating the need to sort the parasitoid-infested from the

non-infested hosts before the parasitoids are released into

the field. Both gamma and x-ray irradiation do not seem

to have major negative impacts on the quality of medfly

(Cancino et al., 2012) and Anastrepha fraterculus (Wiede-

mann) (Bachmann et al., 2015) for use in rearing of

D. longicaudata. Although a decrease in the number of

mature eggs in adult females was observed, this did not

affect the number of progeny in P. humilis (Yokoyama

et al., 2010, 2012). Alternative methods of removing the

residing non-parasitized hosts, when irradiation treatment

is not available, can be (1) selection on pupal size with a

pupal sizer or pneumatic air separator (Bautista et al.,

1999), but this is time consuming and can result in too

many parasitized pupae being discarded; (2) separation

based on size difference between adult emerged parasitoid

and host with a mesh (Bautista et al., 1998), which usually

works well but is less convenient on a large scale, and (3)

use of developmental time differences, such as
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unparasitized pupae typically emerging earlier (Bautista

et al., 1999).

Other main problems in B. oleae parasitoid rearing are

(1) insufficient production of host insect numbers

(Yokoyama et al., 2010; Daane et al., 2015), (2) low para-

sitoid quality as a result of rearing procedures or labora-

tory domestication (Delrio et al., 2005), (3) low

emergence rates under laboratory rearing conditions

(Loni, 2003), and (4) low parasitoid infestation in the field

after release (Yokoyama et al., 2010). These studies reveal

that rearing procedures for B. oleae parasitoids are not yet

optimized and that much can be improved for increasing

their quantity, quality, field survival, and host targeting.

Beneficial symbionts in olive fruit fly and related
species

Like all animal species, insects are masters in establishing

sophisticated symbiotic associations with a variety of bac-

teria and fungi affecting all aspects of their biology, includ-

ing nutrition, immunity, reproduction, ecology, and

evolution (Bourtzis & Miller, 2003, 2006, 2008; Vega &

Blackwell, 2005; Zchori-Fein & Bourtzis, 2011; Engel &

Moran, 2013). The insect gut contains a variety of symbi-

otic microorganisms, which provide various benefits that

enhance the fitness of their hosts. In principle, these sym-

biotic microorganisms may be exploited to enhance mass

rearing by helping insects digest their diet or by providing

them with crucial nutritional elements. Nutrient provi-

sioning (especially nitrogen) is an important function of

symbionts because they are able to digest food or waste

components by hydrolysis, making them available to their

insect host (Engel &Moran, 2013). Sometimes this benefit

to the host is accompanied by detoxification of insecticides

and plant defence chemicals, enabling their host to live in

unique habitats (Kikuchi et al., 2012; Engel & Moran,

2013; Hammer & Bowers, 2015).

Besides digestive functions, insect gut symbionts can

have an array of other functions (see Engel & Moran,

2013, for an overview). They can provide protection

against parasites via competition or immune priming,

called colonization resistance (Vollaard & Clasener, 1994).

Microorganisms can also be involved in the production of

certain signalling compounds such as cuticular hydrocar-

bons that act as pheromones: in Drosophila melanogaster

Meigen the gut microbiota affect mate choice and flies are

attracted to individuals with a similar microbial ecology

(Sharon et al., 2010). In the same species, bacteria are

responsible for cell renewal and growth promotion (Stor-

elli et al., 2011). These non-digestive bacteria are also

interesting for biological control because they potentially

make flies more attractive and thus better candidates for

SIT. They also provide opportunities for attractants in bait

sprays or traps, as proven in B. oleae (Scarpati et al., 1996)

and related fruit flies (Gow, 1954; Drew, 1987; Robacker

et al., 2009).

Tephritid species have established symbiotic associa-

tions with a variety of bacterial and fungal species (Petri,

1909; Mazzon et al., 2008; Andongma et al., 2015;

Augustinos et al., 2015; Ben-Yosef et al., 2015; Morrow

et al., 2015; Hadapad et al., 2016). Although less is known

about the function of fungi compared to bacteria, inacti-

vated yeasts are applied successfully to the artificial diet of

tephritids (Cohen, 2003) and are common attractors in

tephritid baits (Bortoli et al., 2016). This indicates that

yeast is important for nutrition in wild tephritids as well,

just as yeast and yeast-like fungi are in Drosophilidae

(Vega & Blackwell, 2005; Hamby & Becher, 2016). Associ-

ated cultivable yeasts have been identified in Bactrocera

tryoni (Froggatt) (Deutscher et al., 2017) and the total gut

fungal microbiome has been investigated in wild B. oleae

(Malacrin�o et al., 2015).

Medfly is the model species in the Tephritidae family.

Bacterial communities vary between medfly strains and

populations, and can vary among life stages (Aharon

et al., 2013), particularly when exposed to different envi-

ronments. These shifts in community composition may

allow medfly to feed on various host plants (Aharon

et al., 2013). Medfly symbionts are typically taken up

from the environment, but can also be passed on via

vertical transmission (Behar et al., 2008a; Ben Ami et al.,

2010). Besides passing on the bacteria, the female medfly

also provides eggs with an antibiotic substance during

oviposition (Marchini et al., 1991), which is probably

meant to ward off pathogenic bacteria and select for the

beneficial symbionts. The medfly is known to be associ-

ated with bacterial species predominantly from the

Enterobacteriaceae family (Enterobacter, Klebsiella, and

Pectobacterium species). The core bacteria of medfly are

diazotrophic (atmospheric nitrogen fixators) and pecti-

nolytic (hydrolysers of pectin substances in plants) and

seem to help by accelerating fruit decay and providing

nitrogen for the larva as soon as they are inoculated by

the adult by oviposition (Behar et al., 2005, 2008a). Bac-

teria also affect survival depending on the nutrients the

fly receives (Behar et al., 2008b). The benefit of medfly

symbionts can be diet dependent: when enough food is

present some are beneficial by accumulating fats and

improve mating success, but when food is scarce those

bacteria may have a negative effect (Behar et al., 2008b).

It has also been demonstrated that mass rearing and

irradiation may adversely affect bacterial communities in

medfly, by increasing the density of potentially patho-

genic Pseudomonas species (Ben Ami et al., 2010).
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Similar to related tephritid species, B. oleae possesses

several symbiotic-supporting devices (Petri, 1909; Giro-

lami, 1973, cited in Sacchetti et al., 2014), with ceca con-

nected to the larval midgut which can grow and store

bacteria, an oesophageal bulb with the same capabilities in

adults, and additionally an ovipositor diverticulum in

adult females. These specialized organs suggest that the fly

and the symbiont(s) have a tight evolutionary bond and

are in close symbiosis, in which the bacteria provide bene-

fits for the survival of the fly and vice versa. Even though

the exact transmission mechanism has not yet been eluci-

dated, the presence of the ovipositor diverticulum and the

bacteria covering the egg suggest vertical transmission

(Stammer, 1929; Sacchetti et al., 2008; Estes et al., 2009).

Various bacterial species have been reported in associa-

tion with B. oleae over the years (Table 2). Recent studies

have clearly demonstrated that the major symbiont of

B. oleae is Candidatus Erwinia dacicola, a non-cultivable

c-proteo-bacterium, which is present both intra- and

extracellularly (Capuzzo et al., 2005; Estes et al., 2009,

2012; Kounatidis et al., 2009; Savio et al., 2012; Ben-Yosef

et al., 2014, 2015). In addition to Ca. E. dacicola, several

bacterial species have been detected in laboratory and natu-

ral populations of olive fruit fly. These are summarized in

the review by Estes et al. (2011), but additional studies

were done since by Savio et al. (2012), Estes et al. (2012),

and Ben-Yosef et al. (2014, 2015). In wild flies, these sym-

bionts are mostly found in low densities (Ben-Yosef et al.,

2015), and are suggested to be transient (Estes et al., 2011).

The most dominant species are members of Enterobacteri-

aceae, for instance, Enterobacter (Stamopoulos & Tzane-

takis, 1988; Estes et al., 2009), Klebsiella (Tsiropoulos,

1983; Konstantopoulou et al., 2005), Pantoea (Ben-Yosef

et al., 2015), and Serratia (Tsiropoulos, 1983; Konstan-

topoulou et al., 2005), which are commonly associated

with fruit digestion in other fruit fly species (Drew& Lloyd,

1991; Behar et al., 2008a; Ben-Yosef et al., 2010, 2015).

It has been reported that B. oleae (as well as its close

tephritid relatives) cannot survive under sterile labora-

tory conditions unless its artificial larval diet contains

hydrolysed proteins (Hagen et al., 1963). This clearly

suggests that microorganisms are somehow essential and

play a role in digestion in natural populations. The main

function of the B. oleae symbionts seems to be to provide

the fly with the ability to digest unripe olives. This is evi-

dent when the bacteria are removed with antibiotics,

which causes inability to digest unripe olives and non-

hydrolysed proteins (Hagen, 1966; Ben-Yosef et al.,

2015). The bacteria seem to produce essential amino

acids by converting proteins and non-essential amino

acids (Ben-Yosef et al., 2010) and additionally help to

overcome the olive’s protective compound oleuropein in

unripe olives (Ben-Yosef et al., 2015), as supported by a

recent transcriptomic study (Pavlidi et al., 2017). In

addition, B. oleae without symbionts becomes more

prone to infections by pathogenic microbes (Cavalloro &

Girolami, 1968, cited in Estes et al., 2011), suggesting a

protective function of the symbionts.

Effects of rearing environment on olive fruit fly
symbionts

Laboratory-reared flies maintained on artificial diets tend

to have a smaller oesophageal bulb (Cavalloro & Girolami,

1968, cited in Estes et al., 2011), and have a lower diversity

in their associated bacterial community. In particular, they

carry fewer members of Enterobacteriaceae and appear to

lose their Ca. E. dacicola (Tsiropoulos, 1983; Belcari et al.,

2003; Konstantopoulou et al., 2005; Estes, 2009; Estes

et al., 2009, 2012; Kounatidis et al., 2009; Ben-Yosef et al.,

2015). In contrast, the genera Acetobacter,Morganella, and

Paenibacillus are only found in laboratory flies with the

most abundant species belonging to Providencia and

Acinetobacter (Kounatidis et al., 2009; Ben-Yosef et al.,

2015). These differences in the gut-associated microbial

communities are likely to be caused by the different envi-

ronment in the laboratory which may (1) lack certain

important natural substances required for the mainte-

nance of the key bacterial symbiotic species, and (2)

include antibiotics and preservatives that may cause the

elimination of the beneficial species. Genetic factors and

bottlenecks are also likely to play an important role during

the domestication process and the adaptation of wild

B. oleae into a non-natural environment. In most cases,

the laboratory populations originate from a small number

of individuals resulting in a laboratory strain that may be

genetically different from wild B. oleae populations

(Zygouridis et al., 2014). A small founder B. oleae popula-

tion may also mean a smaller founder population of sym-

bionts.

In current B. oleae laboratory rearing, antimicrobial

agents are indispensable to prevent the growth of patho-

genic fungi or bacteria. This potentially influences the gut-

associated bacteria community. For example, eggs are

often washed with 2% Clorox (0.11% sodium hypochlo-

rite) solution (Tsitsipis, 1975; Estes et al., 2011) but this

may also remove the bacterial layer on the eggs deposited,

preventing the vertical transmission of the naturally asso-

ciated symbionts. In addition, the larval medium contains

the antimicrobial elements nipagin and potassium sorbate.

Nipagin or Methyl 4-hydroxybenzoate [CH3(C6H4(OH)

COO)] (NCBI PubChem, 2016) is a methylparaben used

as an antimicrobial agent in foods (preservative against

yeasts and moulds) and cosmetics (topical antibiotics).
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Potassium sorbate [C6H7KO2] is a potassium salt of sorbic

acid used as a food preservative to inhibit, retard, or arrest

the process of fermentation, acidification, or other deterio-

ration of foods (NCBI PubChem, 2016). Both these sub-

stances may have an important impact on the B. oleae-

associated microbiota. Nipagin has been shown to cause

changes in the cultivable microbiota community in

B. oleae, where its presence on culture plates caused most

cultivable wild-associated bacteria to be removed and lab-

oratory-associated bacteria to be inhibited (Konstan-

topoulou et al., 1999). Streptomycin is also added to the

adult diet (Hagen et al., 1963). It is a broad-spectrum bac-

tericidal antibiotic that inhibits the synthesis of proteins by

interacting with the bacterial 16S rRNA gene (NCBI Pub-

Chem, 2016). It is likely that those antimicrobials are the

cause of the difference in the cultivable microbiome

between laboratory-reared and wild B. oleae (Konstan-

topoulou et al., 1999, 2005). It is, however, not known yet

at what stage of the domestication process the symbionts

are affected.

Potential of gut symbionts for olive fruit fly rearing

There are several possible options to bring back the benefi-

cial symbionts into the mass rearing of B. oleae. One

option would be to remove antibiotics from the adult and

larval diets, especially during domestication, as demon-

strated by two recent studies. Removal of streptomycin

from the adult diet did not cause extra diet spoilage and

had no negative effect on B. oleae production, at least up

to the eighth generation (Dimou et al., 2010; Rempoulakis

et al., 2014). However, the long-time laboratory colony

that was reared on antibiotics still performed better than

the F8 generation wild-derived flies on diet without antibi-

otics, probably due to a longer laboratory adaptation

(Dimou et al., 2010). Moreover, these experiments were

performed on a relatively small scale (few thousands eggs

per cage per day), whereas most problems appear when

B. oleae strains are put under mass-rearing conditions

(hundreds of thousands of eggs per cage per day) (Manou-

kas, 1975; Estes et al., 2011; Ahmad et al., 2016). It would

be interesting to repeat this antibiotic removal on a larger

scale, including quality tests involving male mating com-

petitiveness which is important for SIT applications. At

the same time, the microbiome composition should be

monitored to see whether particular symbionts, such as

Ca. E. dacicola, may survive the antibiotic treatment.

Besides removing the antibiotics, another option to pro-

mote symbiont survival in the host would be to change the

diet because the larval diet is likely to influence the gut

conditions. The best solution would be to find a food

source that is selective for beneficial bacteria and against

pathogens in the larvae (Cohen, 2003). The olive is such a

selective medium because wild and laboratory flies reared

on olives keep their Ca. E. dacicola (Estes et al., 2012).

There are quite some differences in nutritional values and

chemical composition when comparing the current artifi-

cial larval diet to olives in terms of lipids, amino acid ratio,

and kNA ratio (Manoukas, 1984). For example, oleu-

ropein, which is naturally present in olives and makes the

olive difficult to digest without bacteria (Ben-Yosef et al.,

2015), has interesting antimicrobial properties (Bisignano

et al., 1999). Through these antimicrobial properties,

oleuropein might create a selective environment in the lar-

val gut for the well-adapted symbiotic bacteria like Ca. E.

dacicola. Oleuropein-rich olive waste, olive leaf extracts,

stored waste products of olive oil production, or chemical

substances related to oleuropein have also been shown to

exhibit antimicrobial effects (Medina et al., 2011). Besides

many phenolic compounds, the main natural polypheno-

lic compound in olive mill waste water is hydroxytyrosol,

an antioxidant that may originate from hydrolysis of oleu-

ropein during the milling process (Amiot et al., 1986).

The effect of oleuropein and hydroxytyrosol could be con-

sidered as additives in artificial larval diet of B. oleae dur-

ing domestication and afterwards during mass rearing.

Except for the evaluation of olive oil amounts (Manoukas,

1977) and the addition of other allelochemicals in larval

diet (Manoukas, 1986), which both proved ineffective, this

has not yet been done. Further studies of diet composition

and essential olive compounds for fly production and their

associatedmicrobe composition are clearly warranted.

The third option for exploiting gut symbionts would be

to add them to the diet as probiotic supplements. For pro-

biotic applications, the target bacterial species should be

easy to culture and to add to the diet. This makes Ca. E.

dacicola currently not suitable, but there are several other

potential cultivable candidates. Usually the transiently

associated facultative bacteria have a higher chance to be

cultivable (Estes et al., 2011). There are successful probi-

otic applications in other fruit flies such as medfly (Niyazi

et al., 2004; Ben Ami et al., 2010; Yuval et al., 2010; Gav-

riel et al., 2011; Hamden et al., 2013; Augustinos et al.,

2015) or Bactrocera species (Drew et al., 1983;Meats et al.,

2009; Yao et al., 2017) which could give indications or

useful species for B. oleae probiotic trials. Administering

live Klebsiella oxytoca (Fl€ugge) Lautrop to adult irradiated

medflies improved sexual performance and starvation tol-

erance of sterile males and reduced the density of patho-

genic Pseudomonas species (Ben Ami et al., 2010; Gavriel

et al., 2011). Positive effects were also observed after mix-

ing a cocktail of live bacteria [Klebsiella pneumoniae

(Schr€oter) Trevisan, Enterobacter spp., and Citrobacter freun

dii (Braak) Werkman & Gillen] into the larval food before
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irradiation (Hamden et al., 2013). In the study of Augusti-

nos et al. (2015), probiotics containing Enterobacter spec.

provisioned to larvae resulted in higher pupal and adult

recovery, as well as to enhanced protandry phenomena.

However, no significant effect on mating competitiveness

and longevity under starvation was found. The positive

effects were more pronounced in the live bacteria applica-

tions, which also contributed to enhanced protandry phe-

nomena. Yao et al. (2017) discovered that adding live as

well as dead Enterobacter isolates from the medfly to the

larval diet enhanced the fitness of a Bactrocera cucurbitae

(Coquillett) genetic sexing strain by increasing pupal

weight and survival rate.

Thus far, few studies have considered the effect of add-

ing probiotics to the diet in B. oleae (Ghiardi, 2009, cited

in Estes et al., 2011; Sacchetti et al., 2014). Feeding adult

B. oleae with the live bacterium Pseudomonas putida Tre-

visan as an additive had a positive effect on female produc-

tivity, but a negative effect on male lifespan (Ghiardi,

2009, cited in Estes et al., 2011; Sacchetti et al., 2014). Bac-

trocera oleae larval diet-based probiotic applications have

not been investigated so far. Although bacteria are

involved in nutrient uptake by B. oleae (Estes et al., 2011;

Ben-Yosef et al., 2015), it is not known yet whether the

nutrients are products of the bacteria or whether B. oleae

consumes the bacteria themselves. This is important when

considering the use of probiotics; if bacterial products are

important, live bacteria could be used to inoculate the flies

in order to aid in digestion, or their products could be

added to the diet. However, if the flies consume the bacte-

ria themselves, dead bacterial biomass could be provided

as a diet component, replacing the protein source alto-

gether. For practical reasons such as health safety and food

storage it would be most pragmatic to add dead bacterial

mass to the food in mass-rearing facilities or to keep the

bacteria alive in the fly (Cohen, 2003).

Potential of gut symbionts for parasitoid rearing

In the same way that insect-associated bacterial species

could be of importance in B. oleae mass rearing, micro-

biota might also be a determining factor for efficient – i.e.,
high-quality and cost-effective – parasitoid rearing. Effects
could be direct, by the gut microbiota of the wasp, or indi-

rect, by the host-associated bacteria. Interesting findings

from other host–parasitoid systems may be relevant for

B. oleae parasitoid mass rearing and applications. For

instance, host finding is often influenced by chemicals

from the host’s faeces as in Halticoptera laevigata (Thom-

son) wasps and their tephritid host,Myoleja lucida (Fall�en)

(Hoffmeister & Gienapp, 1999). In the case of the moth

parasitoid Diadromus pulchellus (Wesmael) this

interaction was proven to be mediated by microbes (Thi-

bout et al., 1993). As suggested by Leroy et al. (2011) for

aphids and their natural enemy hoverfly, attractant bacte-

ria and their associated chemicals could be used in

biological control to help guide the predators towards

host-infested spots. Laboratory adaptation can change host

preference towards hosts reared on artificial diet, as shown

in a study on the parasitoid D. longicaudata and the host

Bactrocera dorsalis (Hendel) (oriental fruit fly) (Bautista &

Harris, 1997). The extent to which the B. oleae–parasitoid
interactions in terms of host finding are affected by host-

associated microbes remains to be determined.

After oviposition, once the egg starts developing in the

host, there are several host-derived effects on the para-

sitoid, whichmay affect parasitoid quality (Salt 1968; Eben

et al., 2000). Besides the host defence strategies that

depend on humoral or cellular mechanisms (Godfray,

2016), symbiotic bacteria can also have an important role

in host defence against parasites and pathogens, either

directly or indirectly (Oliver et al., 2014). Several studies

in aphids have found defensive symbiotic bacterial species

against parasitoids, including Candidatus Hamitonella

defensa (Oliver et al., 2003, 2005; Schmid et al., 2012),

Regiella insecticola Moran et al. (Vorburger et al., 2010),

and Serratia symbiotica Moran et al. (Oliver et al., 2003),

whereas Spiroplasma has also been reported as protective

symbiont in various Drosophila species (Xie et al., 2010,

2011, 2014, 2015; Mateos et al., 2016; Paredes et al.,

2016). Whether such defensive symbionts also exist in

B. oleae, or in the medfly used for parasitoid rearing,

remains to be investigated.

When the parasitoid larva is growing in the host, con-

suming host cells and fluids, it can pick up bacteria from

its host. For example, white fly parasitoids were shown to

contain Rickettsia and Hamiltonella bacteria of their host

(Chiel et al., 2009). The Rickettsia, but not the Hamil-

tonella, were retained in adults. This horizontal transmis-

sion mode was more persistent than transmission by host

feeding. In none of the cases did the bacteria transfer verti-

cally to the wasp offspring. These experiments show that

some parasitoid species can obtain bacteria from their

host, and certain bacteria are more easily transferred than

others.

Besides providing immunity, host bacteria can influence

the suitability of the host for parasitoid rearing. An effect

of host diet on parasitoid quality parameters such as long-

evity, size, and fertility was shown for the parasitoid

D. longicaudata with the tephritid host Anastrepha ludens

(Loew) (Eben et al., 2000; Cicero et al., 2012). As seen

from the B. oleae and medfly studies mentioned above,

host quality can be influenced by microbial symbionts and

these symbionts can be influenced by host diet. Therefore,

248 Ras et al.



offering the rearing host probiotics could indirectly influ-

ence parasitoid quality. Both, the microbiome effects on

the quality of B. oleae as a host, as well as the potential

effects on the olive fruit fly parasitoids, remain unexplored

to date.

There may be many other functions of microorganisms

that affect the biology of parasitoids. It would, for instance,

be interesting to explore whether bacteria may aid devel-

oping parasitoids in overcoming or avoiding the host

immune system in the same way they use viruses (Lawr-

ence, 2004), or whether (similar to fruit flies) certain bac-

teria could provide nitrogen to wasps to survive longer in

the field on their low-nitrogen adult diet. Well known is

the manipulation of reproduction byWolbachia and other

bacteria, but this falls beyond the scope of this review.

More relevant examples are a Wolbachia strain that is

needed for oogenesis in the Drosophila parasitoid Asobara

tabida (F€orster) (Dedeine et al., 2001) and (unidentified)

microorganisms that provide Trichogramma bourarachae

(Pintureau & Babault) a higher infestation rate (Girin &

Boul�etreau, 1994). Now that there is an enormous research

effort towards unravelling the role of the microbiome in

organismal functioning, more functions of associated

microbes in parasitoids may well be discovered in the near

future.

Conclusions and challenges

The development and implementation of a SIT

programme, as a component of an AW-IPM strategy to

control populations of B. oleae, depends on a robust and

cost-effective mass-rearing system for this insect pest spe-

cies and its parasitoids. Being monophagous, the domesti-

cation and mass rearing of B. oleae on an artificial rearing

system remain a challenge. This is most likely due to the

genetic and symbiotic changes that occur during

the domestication process. The current data suggest that

the main symbiont Ca. E. dacicola is lost during this pro-

cess. With modern genomic approaches it is now possible

to determine exactly when this loss takes place, as well as

any other changes in the microbiota. As the microbiome

composition also depends on the host genotype and rear-

ing medium, the genetic diversity of the established

B. oleae population and the composition of the diet need

to be revised.

If the loss of Ca. E. dacicola is unavoidable, an interest-

ing area for future research would be the exploitation of

B. oleae (or tephritid)-associated microbiota to identify

cultivable bacterial species that could be used as probiotics

and/or potential functional replacements of the major

symbiont. This would require an extensive characterization

of the B. oleae-associated microbiota from both laboratory

and wild populations, including samples from different

geographic areas, olive tree varieties, and developmental

stages.

Regarding B. oleae parasitoids, there is little knowledge

about their mass rearing and their associated microbiota.

There are indications from other parasitoid–host systems

that microbes can be beneficial to host finding, sex ratio,

and infestation rate. On the other hand, the host could

have defence bacteria that make it harder for the para-

sitoid to infest. Bacteria may also have additional

unknown influences on other life-history traits in para-

sitoids. Interesting potential areas of research might be the

digestion of adult food sources for the wasp, and the effect

of host bacteria on host quality. Given the importance of

symbiotic bacteria in the physiology, ecology, nutrition,

reproduction, immunity, and evolution of insects, it is of

paramount importance to characterize the microbiota

associated with B. oleae parasitoids. This will yield crucial

information on which microbes could be exploited to

improve productivity and quality in parasitoid mass

rearing.
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