35 research outputs found

    Crystal structure, dielectric properties, and optical bandgap control in KNbO 3 –BiMnO 3 ceramics

    Get PDF
    Abstract: (1 − x)KNbO3–xBiMnO3 (0 ≤ x ≤ 0.25) ceramics were prepared by the solid‐state reaction method. An X‐ray diffraction analysis combined with Raman spectroscopy showed the co‐solubility of Bi and Mn in the orthorhombic structure to be less than 5% BiMnO3. Orthorhombic and pseudocubic symmetries coexist in the 0.05 ≤ x ≤ 0.15 region, coinciding with a bimodal grain size distribution. This coexistence of crystal symmetries is further corroborated by several anomalies in the dielectric behavior, which can be ascribed to structural phase transitions. For x ≥ 0.20, only one dielectric anomaly is detected around 100°C, which is commensurate with in situ Raman spectroscopy analysis. This work also shows that Bi/Mn co‐doping can be employed to tailor the bandgap of KNbO3, which narrows continuously with increasing x, resulting in ∼1‐eV narrowing for single‐phase x = 0.25. This may offer the possibility to employ this ferroic material in photoresponsive technologies

    High discharge energy density in novel K1/2Bi1/2TiO3-BiFeO3 based relaxor ferroelectrics

    Get PDF
    An increasing number of new dielectrics are being reported for the development of next-generation ceramic capacitors for power electronics used in clean energy technologies. Here, high discharge energy density (Wdis) ~6.1 J cm−3 with efficiency (η)~72% under a pulsed field (Emax) of 410 kV cm−1 is reported along with temperature stability up to 150 °C (Emax = 200 kV cm−1) for 0.5 K0.5Bi0.5TiO3-0.42BiFeO3-0.08Sm(Mg2/3Nb1/3)O3 (KBT-BF-SMN) bulk ceramics. The optimised composition is chemically heterogeneous but electrically homogenous, similar to several BiFeO3-based dielectrics reported previously and adding to the growing body of evidence that electrical (measured at weak-field) not chemical homogeneity is the best guide to increased Emax and enhanced energy density. KBT-BF-SMN ceramics are therefore considered as promising candidates for pulsed power and power electronics applications

    Synthesis and characterisation of the vibrational and electrical properties of antiferromagnetic 6L-Ba2CoTeO6 ceramics

    Get PDF
    Optimal processing conditions for fabrication of dense single-phase 6L-Ba2CoTeO6 ceramics via the solid-state reaction method were determined. These ceramics possess a room-temperature crystal structure described by the centrosymmetric P[3 with combining macron]m1 space group. Polarized Raman spectroscopy enabled the observation of all the 25 predicted Raman modes and assignment of their symmetries. On cooling, BCTO ceramics exhibit two antiferromagnetic transitions at 3 K and 12.5 K, in broad agreement with a recent single-crystal study [P. Chanlert, N. Kurita, H. Tanaka, D. Goto, A. Matsuo and K. Kindo, Phys. Rev. B: Condens. Matter Mater. Phys., 2016, 93, 094420]. Low temperature Fourier-transform infrared reflectivity analyses suggest the antiferromagnetic phase transitions to be driven by small distortions of the CoO6 octahedra, lowering locally their C3v symmetry. This causes splitting of the associated vibrational modes, but without a long-range structural change. AC impedance spectroscopy revealed BCTO ceramics to be leaky insulators with an activation energy for conduction of ∼0.15−0.25 eV, which suggests electron hopping between mixed oxidation states of Co

    The influence of rice husk ash addition on the properties of metakaolin-based geopolymers

    Get PDF
    This paper investigates the replacement of metakaolin (MK) with rice husk ash (RHA) in the production of alkali-activated binders or geopolymers. The influence of the RHA addition on compressive and flexural strength, as well as water absorption and apparent porosity were determined, in terms of the percentage of RHA in the mixture and molar ratios of the mixes. Fourier Transform Infrared (FTIR) spectroscopy and Energy Dispersive spectroscopy (EDS) were carried out to assess the changes in the microstructure of the geopolymer matrices with the RHA addition. Results have shown that RHA may be a supplementary precursor for geopolymers. The composition of the geopolymer matrices containing 0-40% RHA is very similar, which indicates that the additional Si provided by RHA is not incorporated to the geopolymer matrix. In addition, geopolymers with RHA content higher than 40% present a plastic behavior, characterized by extremely low strength and high deformation, which can be attributed to the formation of silica gel in formulations containing variable Si/Al ratio

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Raman and infrared spectroscopic investigations on the crystal structure and phonon modes of LaYbO3 ceramics

    No full text
    LaYbO3 is a highly distorted perovskite with orthorhombic structure. However, its exact space group has been a matter of debate. Both the polar Pna2(1) and the centrosymmetric Pnma space groups, with Z = 4, have been proposed to describe its structure at room temperature. In this work we present optical spectroscopic investigations by Raman scattering and infrared reflectivity of LaYbO3 ceramics sintered at 1600 degrees C. The results allowed us to propose a new centrosymmetric Cmcm space group for this compound, and to show which phonons give the main contributions to its dielectric constant and quality factor at microwave frequencies

    Ferroelectric Aging and Recoverable Electrostrain in Bati 0.98 Ca 0.02 O 2.98 Ceramics

    No full text
    BaTi0.98Ca0.02O2.98 (BTC) ceramics where Ca2+ acts as an acceptor dopant show ferroelectric aging, reversible domain switching, and a nonlinear recoverable electrostrain of ∼0.04% at ∼11 kV/cm. This behavior is attributed to the mobility of oxide-ion vacancies created by the acceptor doping mechanism and a tendency for the defect symmetry to align with the crystal symmetry. The recoverable strain in unpoled ceramics is of comparable magnitude to that obtained from the linear piezoelectric effect in poled hard-PZT ceramics at a similar applied field. These preliminary results demonstrate the potential of BTC as a ‘Pb-free’ ceramic to achieve significant recoverable electrostrain

    Structure and microwave dielectric properties of low firing Bi2Te2W3O16 ceramics

    No full text
    Dense Bi2Te2W3O16 ceramics were prepared by the conventional solid-state reaction route. X-ray diffraction data show the room-temperature (RT) crystal symmetry of Bi2Te2W3O16 to be well described by the centrosymmetric monoclinic C2/c space group [a = 21.280(5) Å, b = 5.5663(16) Å, c = 12.831(3) Å and β = 124.014(19)° and Z = 4]. Raman spectroscopy analyses are in broad agreement with space group assignment, but also revealed the presence of Bi2W2O9 as a secondary phase. This phase is present as plate-like grains embedded on a fine-grained equiaxed matrix, as revealed by scanning electron microscopy. From the fitting of infrared reflectivity data the relative permittivity, εr, was estimated as 34.2, and the intrinsic quality factor, Qu × f as 57 500 GHz. At RT and microwave frequencies, Bi2Te2W3O16 ceramics sintered at 720°C for 6 h exhibit εr ~ 34.5, Qu × f = 3173 GHz (at 7.5 GHz), and temperature coefficient of resonant frequency, τf = −92 ppm/°C. This shows a good agreement between the estimated and measured εr values, but also shows that, in principle, the dielectric losses of the ceramics are of extrinsic origin
    corecore