10 research outputs found

    Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane

    Get PDF
    The γ-aminobutyric acid type B (GABA(B)) receptor is a prototypical family C G protein-coupled receptor (GPCR) that plays a key role in the regulation of synaptic transmission. Although growing evidence suggests that GPCR signaling in neurons might be highly organized in time and space, limited information is available about the mechanisms controlling the nanoscale organization of GABA(B) receptors and other GPCRs on the neuronal plasma membrane. Using a combination of biochemical assays in vitro, single-particle tracking, and super-resolution microscopy, we provide evidence that the spatial organization and diffusion of GABA(B) receptors on the plasma membrane are governed by dynamic interactions with filamin A, which tethers the receptors to sub-cortical actin filaments. We further show that GABA(B) receptors are located together with filamin A in small nanodomains in hippocampal neurons. These interactions are mediated by the first intracellular loop of the GABA(B1) subunit and modulate the kinetics of Gα(i) protein activation in response to GABA stimulation

    Targeting GABAA_AR-associated proteins: new modulators, labels and concepts

    Get PDF
    γ-aminobutyric acid type A receptors (GABAA_ARs) are the major mediators of synaptic inhibition in the brain. Aberrant GABAA_AR activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer’s and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABAA_ARs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABAA_AR subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABAA_AR-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABAA_AR numbers and clustering, modifying neuronal transmission. Interference with GABAA_AR trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABAA_AR to AP2 increase the surface concentration of GABAA_AR clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABAA_AR accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABAA_AR modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs

    Funktionelle peptidbasierte Sonden zur Visualisierung von hemmenden Synapsen

    No full text
    Short functional peptidic probes can maximize the potential of high-end microscopy techniques and multiplex imaging assays and provide new insights into normal and aberrant molecular, cellular and tissue function. Particularly, the visualization of inhibitory synapses requires protocol tailoring for different sample types and imaging techniques and relies either on genetic manipulation or on antibodies that underperform in tissue immunofluorescence. Starting from an endogenous activity-related ligand of gephyrin, a universal marker of the inhibitory post-synapse, I developed a short peptidic multivalent binder with exceptional affinity and selectivity to gephyrin. By tailoring fluorophores to the binder, I have obtained Sylite, a probe for the visualization of inhibitory synapses, with an outstanding signal-to-background ratio, that bests the “gold standard” gephyrin antibodies both in selectivity and in tissue immunofluorescence. In tissue Sylite benefits from simplified handling, provides robust synaptic labeling in record-short time and, unlike antibodies, is not affected by staining artefacts. In super-resolution microscopy Sylite precisely localizes the post-synapse and enables accurate pre- to post-synapse measurements. Combined with complimentary tracing techniques Sylite reveals inhibitory connectivity and profiles inhibitory inputs and synapse sizes of excitatory and inhibitory neurons in the periaqueductal gray brain region. Lastly, upon probe optimization for live cell application and with the help of novel thiol-reactive cell penetrating peptide I have visualized inhibitory synapses in living neurons. Taken together, my work provided a versatile probe for conventional and super-resolution microscopy and a workflow for the development and application of similar compact functional synthetic probes.Kurze funktionelle peptidische Sonden können das Potenzial von High-End-Mikroskopietechniken und Multiplex-Imaging-Assays maximieren und neue Erkenntnisse ĂŒber normale und abweichende Molekulare-, ZellulĂ€re- und Gewebefunktionen liefern. Insbesondere die Visualisierung inhibitorischer Synapsen erfordert eine Anpassung des Protokolls an verschiedene Probentypen und Bildgebungsverfahren und ist entweder auf genetische Manipulationen oder auf Antikörper angewiesen, die in der Gewebeimmunfluoreszenz unterdurchschnittlich abschneiden. Ausgehend von einem endogenen aktivitĂ€tsbezogenen Liganden von Gephyrin, einem universellen Marker der hemmenden Postsynapse, habe ich einen kurzen peptidischen multivalenten Binder mit außergewöhnlicher AffinitĂ€t und SelektivitĂ€t zu Gephyrin entwickelt. Durch die Anpassung von Fluorophoren an das Bindemittel habe ich Sylite erhalten, eine Sonde fĂŒr die Visualisierung inhibitorischer Synapsen mit einem hervorragenden Signal-Hintergrund-VerhĂ€ltnis, das die "Goldstandard"-Gephyrin-Antikörper sowohl in der SelektivitĂ€t als auch in der Gewebe-Immunfluoreszenz ĂŒbertrifft. Im Gewebe profitiert Sylite von einer vereinfachten Handhabung, bietet eine robuste synaptische Markierung in rekordverdĂ€chtig kurzer Zeit und wird im Gegensatz zu Antikörpern nicht durch FĂ€rbungsartefakte beeintrĂ€chtigt. In der Super-Resolution-Mikroskopie lokalisiert Sylite prĂ€zise die Post-Synapse und ermöglicht genaue Messungen von PrĂ€- zu Postsynapse. In Kombination mit ergĂ€nzenden Tracing-Techniken deckt Sylite die hemmende KonnektivitĂ€t auf und erstellt Profile der hemmenden EingĂ€nge und SynapsengrĂ¶ĂŸen von erregenden und hemmenden Neuronen in der periaquĂ€duktalen Grau Hirnregion. Schließlich habe ich nach Optimierung der Sonde fĂŒr die Anwendung in lebenden Zellen und mit Hilfe eines neuartigen thiolreaktiven zelldurchdringenden Peptids hemmende Synapsen in lebenden Neuronen visualisiert. Insgesamt lieferte meine Arbeit eine vielseitige Sonde fĂŒr konventionelle und superauflösende Mikroskopie und einen Arbeitsablauf fĂŒr die Entwicklung und Anwendung Ă€hnlicher kompakter funktioneller synthetischer Sonden

    Innovative affinitĂ€tsbasierte Markierungen fĂŒr die High-End-Mikroskopie

    No full text
    Advanced tissue imaging techniques and super resolution microscopy are opening new avenues of investigations in life sciences. These mainly instrumentation-driven innovations require the development of appropriate molecular labelling tools. Here, we discuss currently used and upcoming manipulation-free protein labelling strategies and their potential for the precise and interference-free visualization of endogenous proteins

    Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype

    No full text
    Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an “LLGRMKG” motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide “GSLLGRMKGA” binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies “SLLGRM” as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes

    Nitrides of Non‐Main Group Elements

    No full text
    Abstract In the last two decades, there has been a renewed interest in the chemistry of nitrides and nitridometalates. Both binary and higher nitrides MxNy have already featured prominently as refractory materials, corrosion‐ and mechanical wear‐resistant coatings, hard materials, and hard magnets; thin films are used as diffusion barriers in integrated circuits. Whereas research on binary transition metal nitrides is mostly driven by technical and economic interests, the investigation on nitridometalates primarily focuses on exploration with respect to the development of new synthetic strategies and the design of new materials. Within this field of interest, especially the nitride chemistry of rare earth metals is still comparably undeveloped. Chemical bonding in binary nitrides varies from primarily salt‐like via covalent to metallic, whereas nitridometalates are best described as containing covalent complex anions [MxNy]z− with alkali, alkaline earth, or rare earth metal cations providing electroneutrality
    corecore